Lorsque
For a commutative algebraic group
@article{JTNB_2006__18_1_13_0, author = {Boxall, John and Grant, David}, title = {Some remarks on almost rational torsion points}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {13--28}, publisher = {Universit\'e Bordeaux 1}, volume = {18}, number = {1}, year = {2006}, doi = {10.5802/jtnb.531}, zbl = {05070445}, mrnumber = {2245873}, language = {en}, url = {https://www.numdam.org/articles/10.5802/jtnb.531/} }
TY - JOUR AU - Boxall, John AU - Grant, David TI - Some remarks on almost rational torsion points JO - Journal de théorie des nombres de Bordeaux PY - 2006 SP - 13 EP - 28 VL - 18 IS - 1 PB - Université Bordeaux 1 UR - https://www.numdam.org/articles/10.5802/jtnb.531/ DO - 10.5802/jtnb.531 LA - en ID - JTNB_2006__18_1_13_0 ER -
%0 Journal Article %A Boxall, John %A Grant, David %T Some remarks on almost rational torsion points %J Journal de théorie des nombres de Bordeaux %D 2006 %P 13-28 %V 18 %N 1 %I Université Bordeaux 1 %U https://www.numdam.org/articles/10.5802/jtnb.531/ %R 10.5802/jtnb.531 %G en %F JTNB_2006__18_1_13_0
Boxall, John; Grant, David. Some remarks on almost rational torsion points. Journal de théorie des nombres de Bordeaux, Tome 18 (2006) no. 1, pp. 13-28. doi : 10.5802/jtnb.531. https://www.numdam.org/articles/10.5802/jtnb.531/
[1] M. H. Baker, K. A. Ribet, Galois theory and torsion points on curves. Journal de Théorie des Nombres de Bordeaux 15 (2003), 11–32. | Numdam | MR | Zbl
[2] Z. I. Borevich, I. R. Shafarevich, Number Theory. Academic Press, New York, San Francisco and London, (1966). | MR | Zbl
[3] S. Bosch, W. Lütkebohmert, M. Raynaud, Néron models. Ergebnisse der Mathematik und ihrer Grenzgebiete (3), 21. Springer-Verlag, Berlin, 1990. | MR | Zbl
[4] J. Boxall, D. Grant, Theta functions and singular torsion on elliptic curves, in Number Theory for the Millenium, Bruce Berndt, et. al. editors. A K Peters, Natick, (2002), 111–126. | MR | Zbl
[5] J. Boxall, D. Grant, Singular torsion points on elliptic curves. Math. Res. Letters 10 (2003), 847–866. | MR | Zbl
[6] J. Boxall, D. Grant, Examples of torsion points on genus two curves. Trans. AMS 352 (2000), 4533–4555. | MR | Zbl
[7] F. Calegari, Almost rational torsion points on semistable elliptic curves. Intern. Math. Res. Notices (2001), 487–503. | MR | Zbl
[8] R. Coleman, Torsion points on curves and
[9] D. Eisenbud, Commutative algebra. With a view toward algebraic geometry. Graduate Texts in Mathematics 150. Springer-Verlag, New York, 1995. | MR | Zbl
[10] S. Lang, Complex Multiplication. Springer-Verlag, New York, (1983). | MR | Zbl
[11] D. Masser, G. Wüstholz, Galois properties of division fields. Bull. London Math. Soc. 25 (1993), 247–254. | MR | Zbl
[12] B. Mazur, Rational isogenies of prime degree. Invent. Math. 44 (1978), 129–162. | MR | Zbl
[13] L. Merel, Bornes pour la torsion des courbes elliptiques sur les corps de nombres. Invent. Math. 124 (1996), 437-449. | MR | Zbl
[14] M. Newman, Integral matrices. Academic Press, New York and London (1972). | MR | Zbl
[15] T. Ono, Arithmetic of algebraic tori. Ann. Math. 74 (1961), 101–139. | MR | Zbl
[16] P. Parent, Bornes effectives pour la torsion des courbes elliptiques sur les corps de nombres. J. reine angew. Math. 506 (1999), 85–116. | MR | Zbl
[17] F. Pellarin, Sur une majoration explicite pour un degré d’isogénie liant deux courbes elliptiques. Acta Arith. 100 (2001), 203–243. | MR | Zbl
[18] M. Raynaud, Courbes sur une variété abélienne et points de torsion. Invent. Math. 71 (1983), 207–233. | MR | Zbl
[19] K. Ribet, M. Kim, Torsion points on modular curves and Galois theory. Notes of a series of talks by K. Ribet in the Distinguished Lecture Series, Southwestern Center for Arithmetic Algebraic Geometry, May 1999. arXiv:math.NT/0305281
[20] J.-P. Serre, Abelian
[21] J.-P. Serre, Propriétés galoisiennes des points d’ordre fini des courbes elliptiques. Invent. Math. 15 (1972), 259–332. | MR | Zbl
[22] J.-P. Serre, Algèbre et géométrie. Ann. Collège de France (1985–1986), 95–100. | MR
[23] G. Shimura, Introduction to the arithmetic theory of automorphic functions. Iwanami Shoten Publishers and Princeton University Press (1971). | MR | Zbl
[24] A. Silverberg, Fields of definition for homomorphisms of abelian varieties. J. Pure and Applied Algebra 77 (1992), 253–272. | MR | Zbl
[25] A. Silverberg, Yu. G. Zarhin, Étale cohomology and reduction of abelian varieties. Bull. Soc. Math. France. 129 (2001), 141–157. | Numdam | MR | Zbl
[26] J. Tate, Endomorphisms of abelian varieties over finite fields. Invent. Math. 2 (1966), 134–144. | MR | Zbl
[27] E. Viada, Bounds for minimal elliptic isogenies. Preprint.
Cité par Sources :