On donne une preuve simple que pour tout ensemble fini de nombres complexes
We give a simple argument that for any finite set of complex numbers
@article{JTNB_2005__17_3_921_0, author = {Solymosi, J\'ozsef}, title = {On sum-sets and product-sets of complex numbers}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {921--924}, publisher = {Universit\'e Bordeaux 1}, volume = {17}, number = {3}, year = {2005}, doi = {10.5802/jtnb.527}, zbl = {05016594}, mrnumber = {2212132}, language = {en}, url = {https://www.numdam.org/articles/10.5802/jtnb.527/} }
TY - JOUR AU - Solymosi, József TI - On sum-sets and product-sets of complex numbers JO - Journal de théorie des nombres de Bordeaux PY - 2005 SP - 921 EP - 924 VL - 17 IS - 3 PB - Université Bordeaux 1 UR - https://www.numdam.org/articles/10.5802/jtnb.527/ DO - 10.5802/jtnb.527 LA - en ID - JTNB_2005__17_3_921_0 ER -
Solymosi, József. On sum-sets and product-sets of complex numbers. Journal de théorie des nombres de Bordeaux, Tome 17 (2005) no. 3, pp. 921-924. doi : 10.5802/jtnb.527. https://www.numdam.org/articles/10.5802/jtnb.527/
[1] J. Bourgain,S. Konjagin, Estimates for the number of sums and products and for exponential sums over subgrups in finite fields of prime order. C. R. Acad. Sci. Paris 337 (2003), no. 2, 75–80. | MR | Zbl
[2] J. Bourgain, N. Katz, T. Tao, A sum-product estimate in finite fields, and applications. Geometric And Functional Analysis GAFA 14 (2004), no. 1, 27–57. | MR | Zbl
[3] M. Chang, A sum-product estimate in algebraic division algebras over R. Israel Journal of Mathematics (to appear).
[4] M. Chang, Factorization in generalized arithmetic progressions and applications to the Erdős-Szemerédi sum-product problems. Geometric And Functional Analysis GAFA 13 (2003), no. 4, 720–736. | MR | Zbl
[5] M. Chang, Erdős-Szemerédi sum-product problem. Annals of Math. 157 (2003), 939–957. | MR | Zbl
[6] Gy. Elekes, On the number of sums and products. Acta Arithmetica 81 (1997), 365–367. | MR | Zbl
[7] P. Erdős, E. Szemerédi, On sums and products of integers. In: Studies in Pure Mathematics; To the memory of Paul Turán. P.Erdős, L.Alpár, and G.Halász, editors. Akadémiai Kiadó – Birkhauser Verlag, Budapest – Basel-Boston, Mass. 1983, 213–218. | MR | Zbl
[8] K. Ford, Sums and products from a finite set of real numbers. Ramanujan Journal, 2 (1998), (1-2), 59–66. | MR | Zbl
[9] M. B. Nathanson, On sums and products of integers. Proc. Am. Math. Soc. 125 (1997), (1-2), 9–16. | MR | Zbl
- Growth in Sumsets of Higher Convex Functions, Combinatorica, Volume 43 (2023) no. 4, p. 769 | DOI:10.1007/s00493-023-00035-6
- SUM-PRODUCT ESTIMATES FOR DIAGONAL MATRICES, Bulletin of the Australian Mathematical Society, Volume 103 (2021) no. 1, p. 28 | DOI:10.1017/s000497272000060x
- Sum–product phenomena for planar hypercomplex numbers, European Journal of Combinatorics, Volume 89 (2020), p. 103162 | DOI:10.1016/j.ejc.2020.103162
- Introduction to Approximate Groups, 2019 | DOI:10.1017/9781108652865
- An application of kissing number in sum-product estimates, Acta Mathematica Hungarica, Volume 155 (2018) no. 1, p. 47 | DOI:10.1007/s10474-018-0831-x
- New Results for the Growth of Sets of Real Numbers, Discrete Computational Geometry, Volume 54 (2015) no. 4, p. 759 | DOI:10.1007/s00454-015-9731-9
- A Sum–Product Theorem in Function Fields, International Mathematics Research Notices, Volume 2014 (2014) no. 19, p. 5249 | DOI:10.1093/imrn/rnt125
- Additive Combinatorics: With a View Towards Computer Science and Cryptography—An Exposition, Number Theory and Related Fields, Volume 43 (2013), p. 99 | DOI:10.1007/978-1-4614-6642-0_4
- Sum-Product Inequalities with Perturbation, Integers, Volume 11 (2011) no. 3 | DOI:10.1515/integ.2011.023
- Sum-product Estimates in Finite Fields via Kloosterman Sums, International Mathematics Research Notices (2010) | DOI:10.1093/imrn/rnm007
- h-Fold Sums from a Set with Few Products, SIAM Journal on Discrete Mathematics, Volume 24 (2010) no. 2, p. 505 | DOI:10.1137/090756041
- On sums and products in ℂ[x], The Ramanujan Journal, Volume 22 (2010) no. 1, p. 33 | DOI:10.1007/s11139-010-9219-4
Cité par 12 documents. Sources : Crossref