Dans cet article nous prolongeons la construction de Champernowne de nombres normaux dans la base
In this paper we extend Champernowne’s construction of normal numbers in base
@article{JTNB_2005__17_3_825_0, author = {Levin, Mordechay B. and Smorodinsky, Meir}, title = {On linear normal lattices configurations}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {825--858}, publisher = {Universit\'e Bordeaux 1}, volume = {17}, number = {3}, year = {2005}, doi = {10.5802/jtnb.523}, zbl = {05016590}, mrnumber = {2212128}, language = {en}, url = {https://www.numdam.org/articles/10.5802/jtnb.523/} }
TY - JOUR AU - Levin, Mordechay B. AU - Smorodinsky, Meir TI - On linear normal lattices configurations JO - Journal de théorie des nombres de Bordeaux PY - 2005 SP - 825 EP - 858 VL - 17 IS - 3 PB - Université Bordeaux 1 UR - https://www.numdam.org/articles/10.5802/jtnb.523/ DO - 10.5802/jtnb.523 LA - en ID - JTNB_2005__17_3_825_0 ER -
%0 Journal Article %A Levin, Mordechay B. %A Smorodinsky, Meir %T On linear normal lattices configurations %J Journal de théorie des nombres de Bordeaux %D 2005 %P 825-858 %V 17 %N 3 %I Université Bordeaux 1 %U https://www.numdam.org/articles/10.5802/jtnb.523/ %R 10.5802/jtnb.523 %G en %F JTNB_2005__17_3_825_0
Levin, Mordechay B.; Smorodinsky, Meir. On linear normal lattices configurations. Journal de théorie des nombres de Bordeaux, Tome 17 (2005) no. 3, pp. 825-858. doi : 10.5802/jtnb.523. https://www.numdam.org/articles/10.5802/jtnb.523/
[1] R. Adler, M. Keane, M. Smorodinsky, A construction of a normal number for the continued fraction transformation. Journal of Number Theory 13 (1981), 95–105. | MR | Zbl
[2] D. J. Champernowne, The construction of decimals normal in the scale of ten. J. London Math. Soc. 8 (1933), 254–260. | Zbl
[3] J. Cigler, Asymptotische Verteilung reeller Zahlen mod 1. Monatsh. Math. 64 (1960), 201–225. | MR | Zbl
[4] M. Drmota, R. F. Tichy, Sequences, Discrepancies and Applications. Lecture Notes in Math, vol. 1651, Springer, 1997. | MR | Zbl
[5] T. Kamae, Subsequences of normal sequences. Israel J. Math. 16 (1973), 121–149. | MR | Zbl
[6] N. M. Korobov, Exponential Sums and their Applications. Kluwer Academic Publishers, Dordrecht, 1992. | MR | Zbl
[7] L. Kuipers , H. Niederreiter, Uniform Distribution of Sequences. Pure and Applied Mathematics, Wiley–Interscience, New York, 1974. | MR | Zbl
[8] P. Kirschenhofer, R.F. Tichy, On uniform distribution of double sequences. Manuscripta Math. 35 (1981), 195–207. | MR | Zbl
[9] M. B. Levin, On normal lattice configurations and simultaneously normal numbers. J. Théor. Nombres Bordeaux 13 (2001), 483–527. | Numdam | MR | Zbl
[10] M. B. Levin, Discrepancy estimate of completely uniform distributed double sequences. In preparation.
[11] M. B. Levin, M. Smorodinsky, A
[12] M. B. Levin, M. Smorodinsky, Explicit construction of normal lattice configurations. Colloq. Math. 102 (2005), 33–47. | MR | Zbl
[13] M. B. Levin, M. Smorodinsky, On polynomial normal lattice configurations. Monatsh. Math. (2005) | MR | Zbl
[14] A. G. Postnikov, Arithmetic modeling of random processes. Proc. Steklov. Inst. Math. 57 (1960), 84 pp. | MR | Zbl
[15] M. Smorodinsky, B. Weiss, Normal sequences for Markov shifts and intrinsically ergodic subshifts. Israel J. Math. 59 (1987), 225–233. | MR | Zbl
[16] B. Weiss, Normal sequences as collectives. Proc. Symp. on Topological Dynamics and Ergodic Theory, Univ. of Kentucky, 1971.
- On Polynomially Normal Lattice Configurations, Monatshefte für Mathematik, Volume 147 (2006) no. 2, p. 137 | DOI:10.1007/s00605-005-0340-1
Cité par 1 document. Sources : Crossref