Agrawal, Kayal, et Saxena ont récemment introduit une nouvelle méthode pour montrer qu’un entier est premier. La vitesse de cette méthode dépend des minorations prouvées pour la taille du semi-groupe multiplicatif engendré par plusieurs polynômes modulo un autre polynôme
Agrawal, Kayal, and Saxena recently introduced a new method of proving that an integer is prime. The speed of the Agrawal-Kayal-Saxena method depends on proven lower bounds for the size of the multiplicative semigroup generated by several polynomials modulo another polynomial
@article{JTNB_2005__17_3_721_0, author = {Bernstein, Daniel J.}, title = {Sharper {ABC-based} bounds for congruent polynomials}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {721--725}, publisher = {Universit\'e Bordeaux 1}, volume = {17}, number = {3}, year = {2005}, doi = {10.5802/jtnb.515}, zbl = {05016582}, mrnumber = {2212120}, language = {en}, url = {https://www.numdam.org/articles/10.5802/jtnb.515/} }
TY - JOUR AU - Bernstein, Daniel J. TI - Sharper ABC-based bounds for congruent polynomials JO - Journal de théorie des nombres de Bordeaux PY - 2005 SP - 721 EP - 725 VL - 17 IS - 3 PB - Université Bordeaux 1 UR - https://www.numdam.org/articles/10.5802/jtnb.515/ DO - 10.5802/jtnb.515 LA - en ID - JTNB_2005__17_3_721_0 ER -
%0 Journal Article %A Bernstein, Daniel J. %T Sharper ABC-based bounds for congruent polynomials %J Journal de théorie des nombres de Bordeaux %D 2005 %P 721-725 %V 17 %N 3 %I Université Bordeaux 1 %U https://www.numdam.org/articles/10.5802/jtnb.515/ %R 10.5802/jtnb.515 %G en %F JTNB_2005__17_3_721_0
Bernstein, Daniel J. Sharper ABC-based bounds for congruent polynomials. Journal de théorie des nombres de Bordeaux, Tome 17 (2005) no. 3, pp. 721-725. doi : 10.5802/jtnb.515. https://www.numdam.org/articles/10.5802/jtnb.515/
[1] Daniel J. Bernstein, Proving primality in essentially quartic random time. Mathematics of Computation, to appear. http://cr.yp.to/papers.html#quartic | MR | Zbl
[2] Noah Snyder, An alternate proof of Mason’s theorem. Elemente der Mathematik 55 (2000), 93–94. http://www.springerlink.com/openurl.asp?genre=article&issn=0013-6018&volume=55&issue=3&spage=93 | MR | Zbl
[3] José Felipe Voloch, On some subgroups of the multiplicative group of finite rings. Journal de Théorie des Nombres de Bordeaux 16 (2004), 1246–7405. http://www.ma.utexas.edu/users/voloch/preprint.html | Numdam | MR | Zbl
Cité par Sources :