Nous donnons des majorants explicites des résidus au point
Lately, explicit upper bounds on
@article{JTNB_2005__17_2_559_0, author = {Louboutin, St\'ephane}, title = {On the use of explicit bounds on residues of {Dedekind} zeta functions taking into account the behavior of small primes}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {559--573}, publisher = {Universit\'e Bordeaux 1}, volume = {17}, number = {2}, year = {2005}, doi = {10.5802/jtnb.508}, zbl = {1091.11039}, mrnumber = {2211308}, language = {en}, url = {https://www.numdam.org/articles/10.5802/jtnb.508/} }
TY - JOUR AU - Louboutin, Stéphane TI - On the use of explicit bounds on residues of Dedekind zeta functions taking into account the behavior of small primes JO - Journal de théorie des nombres de Bordeaux PY - 2005 SP - 559 EP - 573 VL - 17 IS - 2 PB - Université Bordeaux 1 UR - https://www.numdam.org/articles/10.5802/jtnb.508/ DO - 10.5802/jtnb.508 LA - en ID - JTNB_2005__17_2_559_0 ER -
%0 Journal Article %A Louboutin, Stéphane %T On the use of explicit bounds on residues of Dedekind zeta functions taking into account the behavior of small primes %J Journal de théorie des nombres de Bordeaux %D 2005 %P 559-573 %V 17 %N 2 %I Université Bordeaux 1 %U https://www.numdam.org/articles/10.5802/jtnb.508/ %R 10.5802/jtnb.508 %G en %F JTNB_2005__17_2_559_0
Louboutin, Stéphane. On the use of explicit bounds on residues of Dedekind zeta functions taking into account the behavior of small primes. Journal de théorie des nombres de Bordeaux, Tome 17 (2005) no. 2, pp. 559-573. doi : 10.5802/jtnb.508. https://www.numdam.org/articles/10.5802/jtnb.508/
[Bes] S. Bessassi, Bounds for the degrees of CM-fields of class number one. Acta Arith. 106 (2003), 213–245. | MR | Zbl
[BHM] Y. Bugeaud, G. Hanrot, M. Mignotte, Sur l’équation diophantienne
[BL02] G. Boutteaux, S. Louboutin, The class number one problem for some non-normal sextic CM-fields. Part 2. Acta Math. Inform. Univ. Ostraviensis 10 (2002), 3–23. | MR | Zbl
[Boo] A. R. Booker, Quadratic class numbers and characters sums. Math. Comp., to appear. | MR | Zbl
[CL] H. Cohen, H. W. Lenstra, Heuristics on class groups of number fields. Lecture Notes in Math. 1068 (1984), 33–62. | MR | Zbl
[CW] G. Cornell, L. C. Washington, Class numbers of cyclotomic fields. J. Number Theory 21 (1985), 260–274. | MR | Zbl
[JWW] M. J. Jacobson, H. C. Williams, K. Wooding, Imaginary cyclic quartic fileds with large minus class numbers. Algorithmic Number Theory (University of Vermont, 2004), Lectures Notes in Computer Science 3076 (2004), 280–292. | MR | Zbl
[Laz1] A. J. Lazarus, Class numbers of simplest quartic fields. Number theory (Banff, AB, 1988), 313–323, Walter de Gruyter, Berlin, 1990. | MR | Zbl
[Laz2] A. J. Lazarus, On the class number and unit index of simplest quartic fields. Nagoya Math. J. 121 (1991), 1–13. | MR | Zbl
[Le] M. Le, Upper bounds for class numbers of real quadratic fields. Acta Arith. 68 (1994), 141–144. | MR | Zbl
[LK] G.-N. Lee, S.-H. Kwon, CM-fields with relative class number one. Math. Comp., to appear. | MR | Zbl
[Lou95] S. Louboutin, Determination of all non-quadratic imaginary cyclic number fields of
[Lou97] S. Louboutin, CM-fields with cyclic ideal class groups of
[Lou98] S. Louboutin, Computation of relative class numbers of imaginary abelian number fields. Experimental Math. 7 (1998), 293–303. | MR | Zbl
[Lou01] S. Louboutin, Explicit upper bounds for residues of Dedekind zeta functions and values of
[Lou02a] S. Louboutin, Efficient computation of class numbers of real abelian number fields. Lectures Notes in Computer Science 2369 (2002), 625–628. | MR | Zbl
[Lou02b] S. Louboutin, Computation of class numbers of quadratic number fields. Math. Comp. 71 (2002), 1735–1743. | MR | Zbl
[Lou02c] S. Louboutin, The exponent three class group problem for some real cyclic cubic number fields. Proc. Amer. Math. Soc. 130 (2002), 353–361. | MR | Zbl
[Lou03] S. Louboutin, Explicit lower bounds for residues at
[Lou04a] S. Louboutin, Explicit upper bounds for values at
[Lou04b] S. Louboutin, The simplest quartic fields with ideal class groups of exponents
[Lou04c] S. Louboutin, Class numbers of real cyclotomic fields. Publ. Math. Debrecen 64 (2004), 451–461. | MR | Zbl
[Lou04d] S. Louboutin, Explicit upper bounds for
[Mos] C. Moser, Nombre de classes d’une extension cyclique réelle de
[MP] C. Moser, J.-J. Payan, Majoration du nombre de classes d’un corps cubique de conducteur premier. J. Math. Soc. Japan 33 (1981), 701–706. | Zbl
[MR] M. Mignotte, Y. Roy, Minorations pour l’équation de Catalan. C. R. Acad. Sci. Paris 324 (1997), 377–380. | Zbl
[Odl] A. Odlyzko, Some analytic estimates of class numbers and discriminants. Invent. Math. 29 (1975), 275–286. | MR | Zbl
[Ram01] O. Ramaré, Approximate formulae for
[Ram04] O. Ramaré, Approximate formulae for
[SSW] R. G. Stanton, C. Sudler, H. C. Williams, An upper bound for the period of the simple continued fraction for
[Sta] H. M. Stark, Some effective cases of the Brauer-Siegel Theorem. Invent. Math. 23 (1974), 135–152. | MR | Zbl
[Ste] R. Steiner, Class number bounds and Catalan’s equation. Math. Comp. 67 (1998), 1317–1322. | Zbl
[SWW] E. Seah, L. C. Washington, H. C. Williams, The calculation of a large cubic class number with an application to real cyclotomic fields. Math. Comp. 41 (1983), 303–305. | MR | Zbl
[Wa] L. C. Washington, Class numbers of the simplest cubic fields. Math. Comp. 48 (1987), 371–384. | MR | Zbl
[WB] H. C. Williams, J. Broere, A computational technique for evaluating
- Explicit estimates for Artin L-functions: Duke's short-sum theorem and Dedekind zeta residues, Journal of Number Theory, Volume 238 (2022), p. 920 | DOI:10.1016/j.jnt.2021.10.007
- Some explicit upper bounds for residues of zeta functions of number fields taking into account the behavior of the prime 2, manuscripta mathematica, Volume 125 (2007) no. 1, p. 43 | DOI:10.1007/s00229-007-0132-0
Cité par 2 documents. Sources : Crossref