Pour les systèmes de numération abstraits construits sur des langages réguliers exponentiels (comme par exemple, ceux provenant des substitutions), nous montrons que l’ensemble des nombres réels possédant une représentation ultimement périodique est
For abstract numeration systems built on exponential regular languages (including those coming from substitutions), we show that the set of real numbers having an ultimately periodic representation is
@article{JTNB_2005__17_1_283_0, author = {Rigo, Michel and Steiner, Wolfgang}, title = {Abstract $\beta $-expansions and ultimately periodic representations}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {283--299}, publisher = {Universit\'e Bordeaux 1}, volume = {17}, number = {1}, year = {2005}, doi = {10.5802/jtnb.491}, zbl = {1084.11059}, mrnumber = {2152225}, language = {en}, url = {https://www.numdam.org/articles/10.5802/jtnb.491/} }
TY - JOUR AU - Rigo, Michel AU - Steiner, Wolfgang TI - Abstract $\beta $-expansions and ultimately periodic representations JO - Journal de théorie des nombres de Bordeaux PY - 2005 SP - 283 EP - 299 VL - 17 IS - 1 PB - Université Bordeaux 1 UR - https://www.numdam.org/articles/10.5802/jtnb.491/ DO - 10.5802/jtnb.491 LA - en ID - JTNB_2005__17_1_283_0 ER -
%0 Journal Article %A Rigo, Michel %A Steiner, Wolfgang %T Abstract $\beta $-expansions and ultimately periodic representations %J Journal de théorie des nombres de Bordeaux %D 2005 %P 283-299 %V 17 %N 1 %I Université Bordeaux 1 %U https://www.numdam.org/articles/10.5802/jtnb.491/ %R 10.5802/jtnb.491 %G en %F JTNB_2005__17_1_283_0
Rigo, Michel; Steiner, Wolfgang. Abstract $\beta $-expansions and ultimately periodic representations. Journal de théorie des nombres de Bordeaux, Tome 17 (2005) no. 1, pp. 283-299. doi : 10.5802/jtnb.491. https://www.numdam.org/articles/10.5802/jtnb.491/
[1] A. Bertrand, Développements en base de Pisot et répartition modulo
[2] V. Bruyère, G. Hansel, Bertrand numeration systems and recognizability. Latin American Theoretical INformatics (Valparaíso, 1995). Theoret. Comput. Sci. 181 (1997), 17–43. | MR | Zbl
[3] J.-M. Dumont, A. Thomas, Systèmes de numération et fonctions fractales relatifs aux substitutions. J. Theoret. Comput. Sci. 65 (1989), 153–169. | MR | Zbl
[4] S. Eilenberg, Automata, languages, and machines. Vol. A, Pure and Applied Mathematics, Vol. 58, Academic Press , New York (1974). | MR | Zbl
[5] C. Frougny, B. Solomyak, On representation of integers in linear numeration systems. In Ergodic theory of
[6] C. Frougny, Numeration systems. In M. Lothaire, Algebraic combinatorics on words, Encyclopedia of Mathematics and its Applications 90. Cambridge University Press, Cambridge (2002).
[7] P. B. A. Lecomte, M. Rigo, Numeration systems on a regular language. Theory Comput. Syst. 34 (2001), 27–44. | MR | Zbl
[8] P. Lecomte, M. Rigo, On the representation of real numbers using regular languages. Theory Comput. Syst. 35 (2002), 13–38. | MR | Zbl
[9] P. Lecomte, M. Rigo, Real numbers having ultimately periodic representations in abstract numeration systems. Inform. and Comput. 192 (2004), 57–83. | MR | Zbl
[10] W. Parry, On the
[11] A. Rényi, Representation for real numbers and their ergodic properties. Acta Math. Acad. Sci. Hungar. 8 (1957), 477–493. | MR | Zbl
[12] K. Schmidt, On periodic expansions of Pisot numbers and Salem numbers. Bull. London Math. Soc. 12 (1980), 269–278. | MR | Zbl
- Discrepancy Bounds for β
-adic Halton Sequences, Number Theory – Diophantine Problems, Uniform Distribution and Applications (2017), p. 423 | DOI:10.1007/978-3-319-55357-3_22 - Regularities of the Distribution of β-adic van der Corput Sequences, Monatshefte für Mathematik, Volume 149 (2006) no. 1, p. 67 | DOI:10.1007/s00605-005-0370-8
- Abstract Numeration Systems and Tilings, Mathematical Foundations of Computer Science 2005, Volume 3618 (2005), p. 131 | DOI:10.1007/11549345_13
Cité par 3 documents. Sources : Crossref