On montre que l’ensemble
The set
@article{JTNB_2005__17_1_237_0, author = {Muraz, Gilbert and Verger-Gaugry, Jean-Louis}, title = {On a generalization of the {Selection} {Theorem} of {Mahler}}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {237--269}, publisher = {Universit\'e Bordeaux 1}, volume = {17}, number = {1}, year = {2005}, doi = {10.5802/jtnb.489}, zbl = {1081.11048}, mrnumber = {2152223}, language = {en}, url = {https://www.numdam.org/articles/10.5802/jtnb.489/} }
TY - JOUR AU - Muraz, Gilbert AU - Verger-Gaugry, Jean-Louis TI - On a generalization of the Selection Theorem of Mahler JO - Journal de théorie des nombres de Bordeaux PY - 2005 SP - 237 EP - 269 VL - 17 IS - 1 PB - Université Bordeaux 1 UR - https://www.numdam.org/articles/10.5802/jtnb.489/ DO - 10.5802/jtnb.489 LA - en ID - JTNB_2005__17_1_237_0 ER -
%0 Journal Article %A Muraz, Gilbert %A Verger-Gaugry, Jean-Louis %T On a generalization of the Selection Theorem of Mahler %J Journal de théorie des nombres de Bordeaux %D 2005 %P 237-269 %V 17 %N 1 %I Université Bordeaux 1 %U https://www.numdam.org/articles/10.5802/jtnb.489/ %R 10.5802/jtnb.489 %G en %F JTNB_2005__17_1_237_0
Muraz, Gilbert; Verger-Gaugry, Jean-Louis. On a generalization of the Selection Theorem of Mahler. Journal de théorie des nombres de Bordeaux, Tome 17 (2005) no. 1, pp. 237-269. doi : 10.5802/jtnb.489. https://www.numdam.org/articles/10.5802/jtnb.489/
[BL] M. Baake, D. Lenz, Dynamical systems on translation bounded measures: pure point dynamical and diffraction spectra. Ergod. Th. & Dynam. Sys. 24 (6) (2004), 1867–1893. | MR | Zbl
[B] N. Bourbaki, General Topology. Chapter IX, Addison-Wesley, Reading, 1966.
[Bo] L. Bowen, On the existence of completely saturated packings and completely reduced coverings. Geom. Dedicata 98 (2003), 211–226. | MR | Zbl
[Ca] J.W.S. Cassels, An introduction to the Geometry of Numbers. Springer Verlag, 1959. | Zbl
[Ch] C. Chabauty, Limite d’Ensembles et Géométrie des Nombres. Bull. Soc. Math. Fr. 78 (1950), 143–151. | EuDML | Numdam | MR | Zbl
[CS] J.H. Conway, N.J.A. Sloane, Sphere packings, lattices and groups. Springer-Verlag, Berlin, 1999, third edition. | MR | Zbl
[Dw] S. Dworkin, Spectral Theory and X-Ray Diffraction. J. Math. Phys. 34 (7) (1993), 2965–2967. | MR | Zbl
[GVG] J.-P. Gazeau, J.-L. Verger-Gaugry, Geometric study of the beta-integers for a Perron number and mathematical quasicrystals. J. Théorie Nombres Bordeaux 16 (2004), 125–149. | EuDML | Numdam | MR | Zbl
[Go] J.-B. Gouéré, Quasicrystals and almost-periodicity. Comm. Math. Phys. (2005), accepted. | MR | Zbl
[Groe] H. Groemer, Continuity properties of Voronoi domains. Monatsh. Math. 75 (1971), 423–431. | MR | Zbl
[Gr] E. Grosswald, Representations of Integers as Sums of Squares. Springer-Verlag, New York, 1985. | MR | Zbl
[GL] P.M. Gruber, C.G. Lekkerkerker, Geometry of Numbers. North-Holland, 1987. | MR | Zbl
[Ha] T.C. Hales, Sphere Packings I. Discrete Comput. Geom. 17 (1997), 1–51. | MR | Zbl
[Ke] J.L. Kelley, Hyperspaces of a Continuum. Trans. Amer. Math. Soc. 52 (1942), 22–36. | MR | Zbl
[La] J.C. Lagarias, Bounds for Local Density of Sphere Packings and the Kepler Conjecture. Discrete Comput. Geom. 27 (2002), 165–193. | MR | Zbl
[Ma] K. Mahler, On Lattice Points in
[MS] A.M. Macbeath, S. Swierczkowski, Limits of lattices in a compactly generated group. Canad. J. Math. 12 (1960), 427-437. | MR | Zbl
[Mf] R.B. Mcfeat, Geometry of numbers in adele spaces. Dissertationes Math. (Rozprawy mat.), Warsawa, 88 (1971), 1–49. | MR | Zbl
[Mi] E. Michael, Topologies on Spaces of Subsets. Trans. Amer. Math. Soc. 71 (1951), 152–182. | MR | Zbl
[Mo] R.V. Moody, Meyer sets and their duals. In The Mathematics of Long-Range Aperiodic Order, Ed. by R.V. Moody, Kluwer Academic Publishers (1997), 403–441. | MR | Zbl
[Mu] D. Mumford, A Remark on Mahler’s Compactness Theorem. Proc. of the Amer. Math. Soc. 28 (1971), 289–294. | MR | Zbl
[MVG] G. Muraz, J.-L. Verger-Gaugry, On lower bounds of the density of Delone sets and holes in sequences of sphere packings. Exp. Math. 14:1 (2005), 49–59. | MR | Zbl
[MVG1] G. Muraz, J.-L. Verger-Gaugry, On continuity properties of Voronoi domains and a theorem of Groemer. Preprint (2004).
[RW] C. Radin, M. Wolff, Space Tilings and Local Isomorphism. Geom. Dedicata 42 (1992), 355–360. | MR | Zbl
[Rob] E. Arthur Robinson, Jr., The Dynamical Theory of Tilings and Quasicrystallography. In Ergodic Theory of
[Ro] C.A. Rogers, Packing and Covering. Cambridge University Press, 1964. | MR | Zbl
[RSD] K. Rogers, H.P.F. Swinnerton-Dyer, The Geometry of Numbers over algebraic number fields. Trans. Amer. Math. Soc. 88 (1958), 227–242. | MR | Zbl
[So] B. Solomyak, Spectrum of Dynamical Systems Arising from Delone Sets. In Quasicrystals and Discrete Geometry, Fields Institute Monographs, J. Patera Ed., 10 (1998), AMS, 265–275. | MR | Zbl
[St] K.B. Stolarsky, Sums of distances between points on a sphere. Proc. Amer. Math. Soc. 35 (1972), 547–549. | MR | Zbl
[We] A. Weil, Sur les Espaces à Structure Uniforme et sur la Topologie Générale. Hermann, Paris, 1938. | Zbl
Cité par Sources :