En 1989, E. Saias a établi une formule asymptotique pour avec un très bon terme d’erreur, valable si , , Nous étendons ce résultat à un corps de nombre en obtenant une formule asymptotique pour la fonction analogue avec le même terme d’erreur et la même zone de validité. Notre objectif principal est de comparer les formules pour et en particulier comparer le second terme des développements.
In 1989, E. Saias established an asymptotic formula for with a very good error term, valid for , , We extend this result to an algebraic number field by obtaining an asymptotic formula for the analogous function with the same error term and valid in the same region. Our main objective is to compare the formulae for and and in particular to compare the second term in the two expansions.
@article{JTNB_2004__16_3_733_0, author = {Scourfield, Eira J.}, title = {On ideals free of large prime factors}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {733--772}, publisher = {Universit\'e Bordeaux 1}, volume = {16}, number = {3}, year = {2004}, doi = {10.5802/jtnb.468}, zbl = {1073.11061}, mrnumber = {2144965}, language = {en}, url = {http://www.numdam.org/articles/10.5802/jtnb.468/} }
TY - JOUR AU - Scourfield, Eira J. TI - On ideals free of large prime factors JO - Journal de théorie des nombres de Bordeaux PY - 2004 SP - 733 EP - 772 VL - 16 IS - 3 PB - Université Bordeaux 1 UR - http://www.numdam.org/articles/10.5802/jtnb.468/ DO - 10.5802/jtnb.468 LA - en ID - JTNB_2004__16_3_733_0 ER -
Scourfield, Eira J. On ideals free of large prime factors. Journal de théorie des nombres de Bordeaux, Tome 16 (2004) no. 3, pp. 733-772. doi : 10.5802/jtnb.468. http://www.numdam.org/articles/10.5802/jtnb.468/
[1] N.G. de Bruijn, On the number of positive integers and free of prime factors . Indag. Math. 13 (1951), 50–60. | MR | Zbl
[2] N.G. de Bruijn, The asymptotic behaviour of a function occurring in the theory of primes.J. Indian Math. Soc. (NS) 15 (1951), 25–32. | MR | Zbl
[3] J.A. Buchmann, C.S Hollinger, On smooth ideals in number fields. J. Number Theory 59 (1996), 82–87. | MR | Zbl
[4] K. Dilcher, Generalized Euler constants for arithmetical progressions. Math. Comp. 59 (1992), 259–282. | MR | Zbl
[5] P. Erdös, A. Ivić, C. Pomerance,On sums involving reciprocals of the largest prime factor of an integer. Glas. Mat. Ser. III 21 (41) (1986), 283–300. | MR | Zbl
[6] J.H. Evertse, P. Moree, C.L. Stewart, R. Tijdeman, Multivariate Diophantine equations with many solutions. Acta Arith. 107 (2003), 103–125. | MR | Zbl
[7] J.B. Friedlander, On the large number of ideals free from large prime divisors. J. Reine Angew. Math. 255 (1972), 1–7. | MR | Zbl
[8] J.R. Gillett, On the largest prime divisors of ideals in fields of degree n. Duke Math. J. 37 (1970), 589–600. | MR | Zbl
[9] L.J. Goldstein, Analytic Number Theory, Prentice-Hall, Inc., New Jersey, 1971. | MR | Zbl
[10] D.G. Hazlewood,On ideals having only small prime factors. Rocky Mountain J. Math. 7 (1977), 753–768. | MR | Zbl
[11] A. Hildebrand, On the number of positive integers and free of prime factors . J. Number Theory 22 (1986), 289–307. | MR | Zbl
[12] A. Hildebrand, G. Tenenbaum, On integers free of large prime factors. Trans. Amer. Math. Soc. 296 (1986), 265–290. | MR | Zbl
[13] M.N. Huxley, N. Watt, The number of ideals in a quadratic field II. Israel J. Math. 120 (2000), part A, 125–153. | MR | Zbl
[14] A. Ivić, Sum of reciprocals of the largest prime factor of an integer. Arch. Math. 36 (1981), 57–61. | MR | Zbl
[15] A. Ivić, On some estimates involving the number of prime divisors of an integer. Acta Arith. 49 (1987), 21–33. | MR | Zbl
[16] A. Ivić, On sums involving reciprocals of the largest prime factor of an integer II. Ibid 71 (1995), 229–251. | MR | Zbl
[17] A. Ivić, The Riemann zeta-function, Wiley, New York - Chichester - Brisbane - Toronto - Singapore, 1985. | MR | Zbl
[18] A. Ivić, C. Pomerance, Estimates for certain sums involving the largest prime factor of an integer. In: Topics in Classical Number Theory (Budapest,1981), Colloq. Math. Soc. János Bolyai 34, North-Holland, Amsterdam, 1984, 769–789. | MR | Zbl
[19] U. Krause, Abschätzungen für die Funktion in algebraischen Zahlkörpern. Manuscripta Math. 69 (1990), 319–331. | MR | Zbl
[20] E. Landau, Einführung in die elementare und analytische Theorie der algebraische Zahlen und Ideale. Teubner, Leipzig, 1927, reprint Chelsea, New York, 1949. | Zbl
[21] S. Lang, Algebraic Number Theory, Addison-Wesley, Reading, Mass. - Menlo Park, Calif. - London - Don Mills, Ont., 1970. | MR | Zbl
[22] P. Moree, An interval result for the number field function. Manuscripta Math. 76 (1992), 437–450. | MR | Zbl
[23] P. Moree, On some claims in Ramanujan’s ‘unpublished’ manuscript on the partition and tau functions, arXiv:math.NT/0201265. | MR
[24] W. Narkiewicz, Elementary and analytic theory of algebraic numbers. PNW, Warsaw, 1974. | MR | Zbl
[25] W.G. Nowak, On the distribution of integer ideals in algebraic number fields. Math. Nachr. 161 (1993), 59–74. | MR | Zbl
[26] E. Saias, Sur le nombre des entiers sans grand facteur premier. J. Number Theory 32 (1989), 78–99. | MR | Zbl
[27] E.J. Scourfield, On some sums involving the largest prime divisor of n, II. Acta Arith. 98 (2001), 313–343. | MR | Zbl
[28] H. Smida, Valeur moyenne des fonctions de Piltz sur entiers sans grand facteur premier. Ibid 63 (1993), 21–50. | MR | Zbl
[29] A.V. Sokolovskii, A theorem on the zeros of Dedekind’s zeta-function and the distance between ‘neighbouring’ prime ideals, (Russian). Ibid 13 (1968), 321–334. | MR | Zbl
[30] W. Staś, On the order of Dedekind zeta-function in the critical strip. Funct. Approximatio Comment. Math. 4 (1976), 19–26. | MR | Zbl
[31] G. Tenenbaum, Introduction to analytic and probabilistic number theory, CUP, Cambridge, 1995. | MR | Zbl
Cité par Sources :