En 1989, E. Saias a établi une formule asymptotique pour
In 1989, E. Saias established an asymptotic formula for
@article{JTNB_2004__16_3_733_0, author = {Scourfield, Eira J.}, title = {On ideals free of large prime factors}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {733--772}, publisher = {Universit\'e Bordeaux 1}, volume = {16}, number = {3}, year = {2004}, doi = {10.5802/jtnb.468}, zbl = {1073.11061}, mrnumber = {2144965}, language = {en}, url = {https://www.numdam.org/articles/10.5802/jtnb.468/} }
TY - JOUR AU - Scourfield, Eira J. TI - On ideals free of large prime factors JO - Journal de théorie des nombres de Bordeaux PY - 2004 SP - 733 EP - 772 VL - 16 IS - 3 PB - Université Bordeaux 1 UR - https://www.numdam.org/articles/10.5802/jtnb.468/ DO - 10.5802/jtnb.468 LA - en ID - JTNB_2004__16_3_733_0 ER -
Scourfield, Eira J. On ideals free of large prime factors. Journal de théorie des nombres de Bordeaux, Tome 16 (2004) no. 3, pp. 733-772. doi : 10.5802/jtnb.468. https://www.numdam.org/articles/10.5802/jtnb.468/
[1] N.G. de Bruijn, On the number of positive integers
[2] N.G. de Bruijn, The asymptotic behaviour of a function occurring in the theory of primes.J. Indian Math. Soc. (NS) 15 (1951), 25–32. | MR | Zbl
[3] J.A. Buchmann, C.S Hollinger, On smooth ideals in number fields. J. Number Theory 59 (1996), 82–87. | MR | Zbl
[4] K. Dilcher, Generalized Euler constants for arithmetical progressions. Math. Comp. 59 (1992), 259–282. | MR | Zbl
[5] P. Erdös, A. Ivić, C. Pomerance,On sums involving reciprocals of the largest prime factor of an integer. Glas. Mat. Ser. III 21 (41) (1986), 283–300. | MR | Zbl
[6] J.H. Evertse, P. Moree, C.L. Stewart, R. Tijdeman, Multivariate Diophantine equations with many solutions. Acta Arith. 107 (2003), 103–125. | MR | Zbl
[7] J.B. Friedlander, On the large number of ideals free from large prime divisors. J. Reine Angew. Math. 255 (1972), 1–7. | MR | Zbl
[8] J.R. Gillett, On the largest prime divisors of ideals in fields of degree n. Duke Math. J. 37 (1970), 589–600. | MR | Zbl
[9] L.J. Goldstein, Analytic Number Theory, Prentice-Hall, Inc., New Jersey, 1971. | MR | Zbl
[10] D.G. Hazlewood,On ideals having only small prime factors. Rocky Mountain J. Math. 7 (1977), 753–768. | MR | Zbl
[11] A. Hildebrand, On the number of positive integers
[12] A. Hildebrand, G. Tenenbaum, On integers free of large prime factors. Trans. Amer. Math. Soc. 296 (1986), 265–290. | MR | Zbl
[13] M.N. Huxley, N. Watt, The number of ideals in a quadratic field II. Israel J. Math. 120 (2000), part A, 125–153. | MR | Zbl
[14] A. Ivić, Sum of reciprocals of the largest prime factor of an integer. Arch. Math. 36 (1981), 57–61. | MR | Zbl
[15] A. Ivić, On some estimates involving the number of prime divisors of an integer. Acta Arith. 49 (1987), 21–33. | MR | Zbl
[16] A. Ivić, On sums involving reciprocals of the largest prime factor of an integer II. Ibid 71 (1995), 229–251. | MR | Zbl
[17] A. Ivić, The Riemann zeta-function, Wiley, New York - Chichester - Brisbane - Toronto - Singapore, 1985. | MR | Zbl
[18] A. Ivić, C. Pomerance, Estimates for certain sums involving the largest prime factor of an integer. In: Topics in Classical Number Theory (Budapest,1981), Colloq. Math. Soc. János Bolyai 34, North-Holland, Amsterdam, 1984, 769–789. | MR | Zbl
[19] U. Krause, Abschätzungen für die Funktion
[20] E. Landau, Einführung in die elementare und analytische Theorie der algebraische Zahlen und Ideale. Teubner, Leipzig, 1927, reprint Chelsea, New York, 1949. | Zbl
[21] S. Lang, Algebraic Number Theory, Addison-Wesley, Reading, Mass. - Menlo Park, Calif. - London - Don Mills, Ont., 1970. | MR | Zbl
[22] P. Moree, An interval result for the number field
[23] P. Moree, On some claims in Ramanujan’s ‘unpublished’ manuscript on the partition and tau functions, arXiv:math.NT/0201265. | MR
[24] W. Narkiewicz, Elementary and analytic theory of algebraic numbers. PNW, Warsaw, 1974. | MR | Zbl
[25] W.G. Nowak, On the distribution of integer ideals in algebraic number fields. Math. Nachr. 161 (1993), 59–74. | MR | Zbl
[26] E. Saias, Sur le nombre des entiers sans grand facteur premier. J. Number Theory 32 (1989), 78–99. | MR | Zbl
[27] E.J. Scourfield, On some sums involving the largest prime divisor of n, II. Acta Arith. 98 (2001), 313–343. | MR | Zbl
[28] H. Smida, Valeur moyenne des fonctions de Piltz sur entiers sans grand facteur premier. Ibid 63 (1993), 21–50. | MR | Zbl
[29] A.V. Sokolovskii, A theorem on the zeros of Dedekind’s zeta-function and the distance between ‘neighbouring’ prime ideals, (Russian). Ibid 13 (1968), 321–334. | MR | Zbl
[30] W. Staś, On the order of Dedekind zeta-function in the critical strip. Funct. Approximatio Comment. Math. 4 (1976), 19–26. | MR | Zbl
[31] G. Tenenbaum, Introduction to analytic and probabilistic number theory, CUP, Cambridge, 1995. | MR | Zbl
Cité par Sources :