On ideals free of large prime factors
Journal de théorie des nombres de Bordeaux, Tome 16 (2004) no. 3, pp. 733-772.

En 1989, E. Saias a établi une formule asymptotique pour Ψ(x,y)=nx:pnpy avec un très bon terme d’erreur, valable si exp(loglogx)(5/3)+ϵyx, xx0(ϵ), ϵ>0. Nous étendons ce résultat à un corps de nombre K en obtenant une formule asymptotique pour la fonction analogue ΨK(x,y) avec le même terme d’erreur et la même zone de validité. Notre objectif principal est de comparer les formules pour Ψ(x,y) et ΨK(x,y), en particulier comparer le second terme des développements.

In 1989, E. Saias established an asymptotic formula for Ψ(x,y)=nx:pnpy with a very good error term, valid for exp(loglogx)(5/3)+ϵyx, xx0(ϵ), ϵ>0. We extend this result to an algebraic number field K by obtaining an asymptotic formula for the analogous function ΨK(x,y) with the same error term and valid in the same region. Our main objective is to compare the formulae for Ψ(x,y) and ΨK(x,y), and in particular to compare the second term in the two expansions.

DOI : 10.5802/jtnb.468
Scourfield, Eira J. 1

1 Mathematics Department, Royal Holloway University of London, Egham, Surrey TW20 0EX, UK.
@article{JTNB_2004__16_3_733_0,
     author = {Scourfield, Eira J.},
     title = {On ideals free of large prime factors},
     journal = {Journal de th\'eorie des nombres de Bordeaux},
     pages = {733--772},
     publisher = {Universit\'e Bordeaux 1},
     volume = {16},
     number = {3},
     year = {2004},
     doi = {10.5802/jtnb.468},
     zbl = {1073.11061},
     mrnumber = {2144965},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/jtnb.468/}
}
TY  - JOUR
AU  - Scourfield, Eira J.
TI  - On ideals free of large prime factors
JO  - Journal de théorie des nombres de Bordeaux
PY  - 2004
SP  - 733
EP  - 772
VL  - 16
IS  - 3
PB  - Université Bordeaux 1
UR  - https://www.numdam.org/articles/10.5802/jtnb.468/
DO  - 10.5802/jtnb.468
LA  - en
ID  - JTNB_2004__16_3_733_0
ER  - 
%0 Journal Article
%A Scourfield, Eira J.
%T On ideals free of large prime factors
%J Journal de théorie des nombres de Bordeaux
%D 2004
%P 733-772
%V 16
%N 3
%I Université Bordeaux 1
%U https://www.numdam.org/articles/10.5802/jtnb.468/
%R 10.5802/jtnb.468
%G en
%F JTNB_2004__16_3_733_0
Scourfield, Eira J. On ideals free of large prime factors. Journal de théorie des nombres de Bordeaux, Tome 16 (2004) no. 3, pp. 733-772. doi : 10.5802/jtnb.468. https://www.numdam.org/articles/10.5802/jtnb.468/

[1] N.G. de Bruijn, On the number of positive integers x and free of prime factors >y. Indag. Math. 13 (1951), 50–60. | MR | Zbl

[2] N.G. de Bruijn, The asymptotic behaviour of a function occurring in the theory of primes.J. Indian Math. Soc. (NS) 15 (1951), 25–32. | MR | Zbl

[3] J.A. Buchmann, C.S Hollinger, On smooth ideals in number fields. J. Number Theory 59 (1996), 82–87. | MR | Zbl

[4] K. Dilcher, Generalized Euler constants for arithmetical progressions. Math. Comp. 59 (1992), 259–282. | MR | Zbl

[5] P. Erdös, A. Ivić, C. Pomerance,On sums involving reciprocals of the largest prime factor of an integer. Glas. Mat. Ser. III 21 (41) (1986), 283–300. | MR | Zbl

[6] J.H. Evertse, P. Moree, C.L. Stewart, R. Tijdeman, Multivariate Diophantine equations with many solutions. Acta Arith. 107 (2003), 103–125. | MR | Zbl

[7] J.B. Friedlander, On the large number of ideals free from large prime divisors. J. Reine Angew. Math. 255 (1972), 1–7. | MR | Zbl

[8] J.R. Gillett, On the largest prime divisors of ideals in fields of degree n. Duke Math. J. 37 (1970), 589–600. | MR | Zbl

[9] L.J. Goldstein, Analytic Number Theory, Prentice-Hall, Inc., New Jersey, 1971. | MR | Zbl

[10] D.G. Hazlewood,On ideals having only small prime factors. Rocky Mountain J. Math. 7 (1977), 753–768. | MR | Zbl

[11] A. Hildebrand, On the number of positive integers x and free of prime factors >y. J. Number Theory 22 (1986), 289–307. | MR | Zbl

[12] A. Hildebrand, G. Tenenbaum, On integers free of large prime factors. Trans. Amer. Math. Soc. 296 (1986), 265–290. | MR | Zbl

[13] M.N. Huxley, N. Watt, The number of ideals in a quadratic field II. Israel J. Math. 120 (2000), part A, 125–153. | MR | Zbl

[14] A. Ivić, Sum of reciprocals of the largest prime factor of an integer. Arch. Math. 36 (1981), 57–61. | MR | Zbl

[15] A. Ivić, On some estimates involving the number of prime divisors of an integer. Acta Arith. 49 (1987), 21–33. | MR | Zbl

[16] A. Ivić, On sums involving reciprocals of the largest prime factor of an integer II. Ibid 71 (1995), 229–251. | MR | Zbl

[17] A. Ivić, The Riemann zeta-function, Wiley, New York - Chichester - Brisbane - Toronto - Singapore, 1985. | MR | Zbl

[18] A. Ivić, C. Pomerance, Estimates for certain sums involving the largest prime factor of an integer. In: Topics in Classical Number Theory (Budapest,1981), Colloq. Math. Soc. János Bolyai 34, North-Holland, Amsterdam, 1984, 769–789. | MR | Zbl

[19] U. Krause, Abschätzungen für die Funktion ΨK(x,y) in algebraischen Zahlkörpern. Manuscripta Math. 69 (1990), 319–331. | MR | Zbl

[20] E. Landau, Einführung in die elementare und analytische Theorie der algebraische Zahlen und Ideale. Teubner, Leipzig, 1927, reprint Chelsea, New York, 1949. | Zbl

[21] S. Lang, Algebraic Number Theory, Addison-Wesley, Reading, Mass. - Menlo Park, Calif. - London - Don Mills, Ont., 1970. | MR | Zbl

[22] P. Moree, An interval result for the number field Ψ(x,y) function. Manuscripta Math. 76 (1992), 437–450. | MR | Zbl

[23] P. Moree, On some claims in Ramanujan’s ‘unpublished’ manuscript on the partition and tau functions, arXiv:math.NT/0201265. | MR

[24] W. Narkiewicz, Elementary and analytic theory of algebraic numbers. PNW, Warsaw, 1974. | MR | Zbl

[25] W.G. Nowak, On the distribution of integer ideals in algebraic number fields. Math. Nachr. 161 (1993), 59–74. | MR | Zbl

[26] E. Saias, Sur le nombre des entiers sans grand facteur premier. J. Number Theory 32 (1989), 78–99. | MR | Zbl

[27] E.J. Scourfield, On some sums involving the largest prime divisor of n, II. Acta Arith. 98 (2001), 313–343. | MR | Zbl

[28] H. Smida, Valeur moyenne des fonctions de Piltz sur entiers sans grand facteur premier. Ibid 63 (1993), 21–50. | MR | Zbl

[29] A.V. Sokolovskii, A theorem on the zeros of Dedekind’s zeta-function and the distance between ‘neighbouring’ prime ideals, (Russian). Ibid 13 (1968), 321–334. | MR | Zbl

[30] W. Staś, On the order of Dedekind zeta-function in the critical strip. Funct. Approximatio Comment. Math. 4 (1976), 19–26. | MR | Zbl

[31] G. Tenenbaum, Introduction to analytic and probabilistic number theory, CUP, Cambridge, 1995. | MR | Zbl

Cité par Sources :