Pour un exemple typique de corps de valuation discrète complet
For a typical example of a complete discrete valuation field
@article{JTNB_2004__16_2_377_0, author = {Kurihara, Masato}, title = {On the structure of {Milnor} $K$-groups of certain complete discrete valuation fields}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {377--401}, publisher = {Universit\'e Bordeaux 1}, volume = {16}, number = {2}, year = {2004}, doi = {10.5802/jtnb.452}, zbl = {1079.11058}, mrnumber = {2143560}, language = {en}, url = {https://www.numdam.org/articles/10.5802/jtnb.452/} }
TY - JOUR AU - Kurihara, Masato TI - On the structure of Milnor $K$-groups of certain complete discrete valuation fields JO - Journal de théorie des nombres de Bordeaux PY - 2004 SP - 377 EP - 401 VL - 16 IS - 2 PB - Université Bordeaux 1 UR - https://www.numdam.org/articles/10.5802/jtnb.452/ DO - 10.5802/jtnb.452 LA - en ID - JTNB_2004__16_2_377_0 ER -
%0 Journal Article %A Kurihara, Masato %T On the structure of Milnor $K$-groups of certain complete discrete valuation fields %J Journal de théorie des nombres de Bordeaux %D 2004 %P 377-401 %V 16 %N 2 %I Université Bordeaux 1 %U https://www.numdam.org/articles/10.5802/jtnb.452/ %R 10.5802/jtnb.452 %G en %F JTNB_2004__16_2_377_0
Kurihara, Masato. On the structure of Milnor $K$-groups of certain complete discrete valuation fields. Journal de théorie des nombres de Bordeaux, Tome 16 (2004) no. 2, pp. 377-401. doi : 10.5802/jtnb.452. https://www.numdam.org/articles/10.5802/jtnb.452/
[1] S. Bloch, Algebraic
[2] S. Bloch, K. Kato,
[3] M. Demazure, Lectures on
[4] J.-M. Fontaine, W. Messing,
[5] J. Graham,Continuous symbols on fields of formal power series, Algebraic K-theory II. Lecture Notes in Math. 342, Springer-Verlag (1973), 474–486. | MR | Zbl
[6] L. Illusie, Complexes de de Rham Witt et cohomologie crystalline. Ann. Sci. Éc. Norm. Super.
[7] K. Kato, Residue homomorphisms in Milnor
[8] K. Kato, A generalization of local class field theory by using
[9] K. Kato, On
[10] K. Kato, The explicit reciprocity law and the cohomology of Fontaine-Messing. Bull. Soc. Math. France 119 (1991), 397–441. | Numdam | MR | Zbl
[11] M. Kolster,
[12] M. Kurihara, On two types of complete discrete valuation fields. Compos. Math. 63 (1987), 237–257. | Numdam | MR | Zbl
[13] M. Kurihara, A note on
[14] M. Kurihara, Abelian extensions of an absolutely unramified local field with general residue field. Invent. math. 93 (1988), 451–480. | MR | Zbl
[15] M. Kurihara, The exponential homomorphisms for the Milnor
[16] J. Nakamura, On the structures of the Milnor
[17] J. Nakamura, On the Milnor
[18] A.N. Parshin, Class field theory and algebraic
[19] J.-P. Serre, Corps locaux (
[20] T. Tsuji, Syntomic complexes and
[21] T. Tsuji,
[22] W. Van der Kallen, The
[23] S.V. Vostokov, Explicit form of the law of reciprocity. Izv. Acad. Nauk. SSSR 13 (1979), 557–588. | Zbl
[24] I. Zhukov, Milnor and topological
- Milnor
-groups modulo of a complete discrete valuation field, Proceedings of the Japan Academy, Series A, Mathematical Sciences, Volume 88 (2012) no. 4 | DOI:10.3792/pjaa.88.59 - , Invitation to higher local fields (2000), p. 109 | DOI:10.2140/gtm.2000.3.109
- , Invitation to higher local fields (2000), p. 123 | DOI:10.2140/gtm.2000.3.123
Cité par 3 documents. Sources : Crossref