A monogenic Hasse-Arf theorem
Journal de théorie des nombres de Bordeaux, Tome 16 (2004) no. 2, pp. 373-375.

On étend le théorème de Hasse–Arf de la classe des extensions résiduellement séparables des anneaux de valuation discrète complets à la classe des extensions monogènes.

I extend the Hasse–Arf theorem from residually separable extensions of complete discrete valuation rings to monogenic extensions.

DOI : 10.5802/jtnb.451
Borger, James 1

1 The University of Chicago Department of Mathematics 5734 University Avenue Chicago, Illinois 60637-1546, USA
@article{JTNB_2004__16_2_373_0,
     author = {Borger, James},
     title = {A monogenic {Hasse-Arf} theorem},
     journal = {Journal de th\'eorie des nombres de Bordeaux},
     pages = {373--375},
     publisher = {Universit\'e Bordeaux 1},
     volume = {16},
     number = {2},
     year = {2004},
     doi = {10.5802/jtnb.451},
     zbl = {1077.13011},
     mrnumber = {2143559},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/jtnb.451/}
}
TY  - JOUR
AU  - Borger, James
TI  - A monogenic Hasse-Arf theorem
JO  - Journal de théorie des nombres de Bordeaux
PY  - 2004
SP  - 373
EP  - 375
VL  - 16
IS  - 2
PB  - Université Bordeaux 1
UR  - http://www.numdam.org/articles/10.5802/jtnb.451/
DO  - 10.5802/jtnb.451
LA  - en
ID  - JTNB_2004__16_2_373_0
ER  - 
%0 Journal Article
%A Borger, James
%T A monogenic Hasse-Arf theorem
%J Journal de théorie des nombres de Bordeaux
%D 2004
%P 373-375
%V 16
%N 2
%I Université Bordeaux 1
%U http://www.numdam.org/articles/10.5802/jtnb.451/
%R 10.5802/jtnb.451
%G en
%F JTNB_2004__16_2_373_0
Borger, James. A monogenic Hasse-Arf theorem. Journal de théorie des nombres de Bordeaux, Tome 16 (2004) no. 2, pp. 373-375. doi : 10.5802/jtnb.451. http://www.numdam.org/articles/10.5802/jtnb.451/

[1] K. Kato, Swan conductors for characters of degree one in the imperfect residue field case. Algebraic K-theory and algebraic number theory, ed. M. Stein and R. K. Dennis, Contemp. Math. 83, Amer. Math. Soc., Providence, 1989, 101–131. | MR | Zbl

[2] S. Matsuda, On the Swan conductor in positive characteristic. Amer. J. Math. 119 (1997), no. 4, 705–739. | MR | Zbl

[3] J-P. Serre, Corps locaux. Deuxième édition. Hermann, Paris, 1968. | MR | Zbl

[4] B. de Smit, The Different and Differentials of Local Fields with Imperfect Residue Fields. Proc. Edin. Math. Soc. 40 (1997), 353–365. | MR | Zbl

[5] L. Spriano. Thesis, Université de Bordeaux, 1999.

Cité par Sources :