Le résultat principal de cet article est une description explicite de la structure des sous-groupes de ramification du groupe de Galois d’un corps local de dimension 2 modulo son sous-groupe des commutateurs d’ordre . Ce résultat joue un role clé dans la preuve par l’auteur d’un analogue de la conjecture de Grothendieck pour les corps de dimension supérieure, cf. Proc. Steklov Math. Institute, vol. 241, 2003, pp. 2-34.
The principal result of this paper is an explicit description of the structure of ramification subgroups of the Galois group of 2-dimensional local field modulo its subgroup of commutators of order . This result plays a clue role in the author’s proof of an analogue of the Grothendieck Conjecture for higher dimensional local fields, cf. Proc. Steklov Math. Institute, vol. 241, 2003, pp. 2-34.
@article{JTNB_2004__16_2_293_0, author = {Abrashkin, Victor}, title = {Towards explicit description of ramification filtration in the 2-dimensional case}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {293--333}, publisher = {Universit\'e Bordeaux 1}, volume = {16}, number = {2}, year = {2004}, doi = {10.5802/jtnb.448}, zbl = {02188519}, mrnumber = {2143556}, language = {en}, url = {http://www.numdam.org/articles/10.5802/jtnb.448/} }
TY - JOUR AU - Abrashkin, Victor TI - Towards explicit description of ramification filtration in the 2-dimensional case JO - Journal de théorie des nombres de Bordeaux PY - 2004 SP - 293 EP - 333 VL - 16 IS - 2 PB - Université Bordeaux 1 UR - http://www.numdam.org/articles/10.5802/jtnb.448/ DO - 10.5802/jtnb.448 LA - en ID - JTNB_2004__16_2_293_0 ER -
%0 Journal Article %A Abrashkin, Victor %T Towards explicit description of ramification filtration in the 2-dimensional case %J Journal de théorie des nombres de Bordeaux %D 2004 %P 293-333 %V 16 %N 2 %I Université Bordeaux 1 %U http://www.numdam.org/articles/10.5802/jtnb.448/ %R 10.5802/jtnb.448 %G en %F JTNB_2004__16_2_293_0
Abrashkin, Victor. Towards explicit description of ramification filtration in the 2-dimensional case. Journal de théorie des nombres de Bordeaux, Tome 16 (2004) no. 2, pp. 293-333. doi : 10.5802/jtnb.448. http://www.numdam.org/articles/10.5802/jtnb.448/
[1] V.A. Abrashkin Ramification filtration of the Galois group of a local field. II. Proceeding of Steklov Math. Inst. 208 (1995). | Zbl
[2] V.A.Abrashkin Ramification filtration of the Galois group of a local field. III. Izvestiya RAN, ser. math. 62, no 5, 3–48. | MR | Zbl
[3] V.A. Abrashkin, On a local analogue of the Grothendieck Conjecture. Intern. Journal of Math. 11 no.1 (2000), 3–43. | MR | Zbl
[4] H. Epp, Eliminating wild ramification. Invent. Math. 19 (1973), 235–249. | MR | Zbl
[5] K. Kato, A generalisation of local class field theory by using -groups I. J. Fac. Sci. Univ. Tokyo Sec. IA 26 no.2 (1979), 303–376. | MR | Zbl
[6] Sh. Mochizuki, A version of the Grothendieck conjecture for -adic local fields. Int. J. Math. 8 no. 4 (1997), 499–506. | MR | Zbl
[7] A.N. Parshin, Local class field theory. Trudy Mat. Inst. Steklov 165 (1984) English transl. in Proc.Steklov Math. Inst. 165 (1985) 157–185. | MR | Zbl
[8] J.-P. Serre, Corps locaux. Hermann, Paris, 1968. | MR | Zbl
[9] I. Zhukov, On ramification theory in the imperfect residue field case. Preprint of Nottingham University 98-02 (1998).
Cité par Sources :