Nous étudions l’équation du titre en utilisant une courbe de Frey, le théorème de descente du niveau de Ribet et une méthode due a Darmon et Merel. Nous pouvons déterminer toutes les solutions entières
We attack the equation of the title using a Frey curve, Ribet’s level-lowering theorem and a method due to Darmon and Merel. We are able to determine all the solutions in pairwise coprime integers
@article{JTNB_2003__15_3_839_0, author = {Siksek, Samir}, title = {On the diophantine equation $x^2 = y^p + 2^k z^p$}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {839--846}, publisher = {Universit\'e Bordeaux I}, volume = {15}, number = {3}, year = {2003}, mrnumber = {2142239}, zbl = {1074.11022}, language = {en}, url = {https://www.numdam.org/item/JTNB_2003__15_3_839_0/} }
Siksek, Samir. On the diophantine equation $x^2 = y^p + 2^k z^p$. Journal de théorie des nombres de Bordeaux, Tome 15 (2003) no. 3, pp. 839-846. https://www.numdam.org/item/JTNB_2003__15_3_839_0/
[1] On the diophantine equation x2 + 2k = yn. Internat. J. Math. & Math. Sci. 20 no. 2 (1997), 299-304. | MR | Zbl
, ,[2] On the modularity of elliptic curves over Q: wild 3-adic exercises. J. Amer. Math. Soc. 14 (2001), 843-939. | MR | Zbl
, , , ,[3] On the diophantine equation x2 - 2m = ±yn. Proc. Amer. Math. Soc. 125 (1997), 3203-3208. | MR | Zbl
,[4] Algorithms for modular elliptic curves (second edition). Cambridge University Press, 1996. | MR | Zbl
,[5] The diophantine equation x2+2k = yn. Arch. Math. 59 (1992), 341-344. | MR | Zbl
,[6] The diophantine equation x2+2k = yn, II. Internat. J. Math. & Math. Sci. 22 no. 3 (1999), 459-462. | MR | Zbl
,[7] The equations xn +yn = x2 and xn + yn = z3. International Mathematics Research Notices 10 (1993), 263-274. | MR | Zbl
,[8] Winding quotients and some variants of Format's Last Theorem. J. Reine Angew. Math. 490 (1997), 81-100. | MR | Zbl
, ,[9] On deformation rings and Hecke rings. Ann. Math. 144 no. 1 (1996), 137-166. | MR | Zbl
,[10] A note on the exponential diophantine equation x2 - 2m = yn. Proc. Amer. Math. Soc. 123 (1995), 3627-3629. | MR | Zbl
, ,[11] Sur les équations xP + 2βyp = z2 et xP + 2β yp = 2z2. To appear in Acta Arith. | Zbl
,[12] Elliptic curves. Mathematical Notes 40, Princeton University Press, 1992. | MR | Zbl
,[13] On Cohn's conjecture concerning the Diophantine equation x2 + 2m = yn, Arch. Math. 78 no. 1 (2002), 26-35. | MR | Zbl
,[14] On modular representations of Gal(/Q) arising from modular forms. Invent. Math. 100 (1990), 431-476. | MR | Zbl
,[15] Sur les répresentations modulaires de degré 2 de Gal(/Q). Duke Math. J. 54 (1987), 179-230. | MR | Zbl
,[16] The algorithmic resolution of diophantine equations. LMS Student Texts 41, Cambridge University Press, 1998. | MR | Zbl
,[17] Ring-theoretic properties of certain Hecke algebras. Ann. Math. 141 (1995), 553-572. | MR | Zbl
, ,[18] Modular elliptic curves and Fermat's Last Theorem. Ann. Math. 141 (1995), 443-551. | MR | Zbl
,