Soit
Let
@article{JTNB_2001__13_1_303_0, author = {Roskam, Hans}, title = {Prime divisors of linear recurrences and {Artin's} primitive root conjecture for number fields}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {303--314}, publisher = {Universit\'e Bordeaux I}, volume = {13}, number = {1}, year = {2001}, mrnumber = {1838089}, zbl = {1044.11005}, language = {en}, url = {https://www.numdam.org/item/JTNB_2001__13_1_303_0/} }
TY - JOUR AU - Roskam, Hans TI - Prime divisors of linear recurrences and Artin's primitive root conjecture for number fields JO - Journal de théorie des nombres de Bordeaux PY - 2001 SP - 303 EP - 314 VL - 13 IS - 1 PB - Université Bordeaux I UR - https://www.numdam.org/item/JTNB_2001__13_1_303_0/ LA - en ID - JTNB_2001__13_1_303_0 ER -
%0 Journal Article %A Roskam, Hans %T Prime divisors of linear recurrences and Artin's primitive root conjecture for number fields %J Journal de théorie des nombres de Bordeaux %D 2001 %P 303-314 %V 13 %N 1 %I Université Bordeaux I %U https://www.numdam.org/item/JTNB_2001__13_1_303_0/ %G en %F JTNB_2001__13_1_303_0
Roskam, Hans. Prime divisors of linear recurrences and Artin's primitive root conjecture for number fields. Journal de théorie des nombres de Bordeaux, Tome 13 (2001) no. 1, pp. 303-314. https://www.numdam.org/item/JTNB_2001__13_1_303_0/
[1] Density of prime divisors of linear recurrent sequences. Mem. of the AMS 551 (1995). | Zbl
,[2] Some empirical observations on primitive roots. J. Number Theory 3 (971),306-309. | MR | Zbl
, ,[3] Algebraic geometry. Springer-Verlag, New York, 1977. | MR | Zbl
,[4] Über die Dichte der Primzahlen p, für die eine vorgegebene ganz-rationale Zahl a ≠ 0 von gerader bzw. ungerader Ordnung mod.p ist. Math. Ann. 166 (1966), 19-23. | MR | Zbl
,[5] On Artin's conjecture. J. Reine Angew. Math. 225 (1967), 209-220. | MR | Zbl
,[6] The set of primes dividing the Lucas numbers has density 2/3. Pacific J. Math. 118 (1985), 449-461; Errata Ibid. 162 (1994), 393-397. | MR | Zbl
,[7] JR, On Artin's conjecture and Euclid's algorithm in global fields. Inv. Math. 42 (1977), 201-224. | MR | Zbl
,[8] Number of points of varieties in finite fields. Amer. J. Math. 76 (1954), 819-827. | MR | Zbl
, ,[9] Prime divisors of Lucas sequences. Acta Arith. 82 (1997), 403-410. | MR | Zbl
, ,[10] Arithmetische Eigenschaften der Reihenentwicklungen rationaler Funktionen. J. Reine Angew. Math. 151 (1921), 99-100. | JFM
,[11] A Quadratic analogue of Artin's conjecture on primitive roots. J. Number Theory 81 (2000), 93-109. | MR | Zbl
,[12] Artin's Primitive Root Conjecture for Quadratic Fields. Accepted for publication in J. Théor. Nombres Bordeaux. | Numdam | Zbl
,[13] Prime divisors of second order linear recurrences. J. Number Theory 8 (1976), 313-332. | MR | Zbl
,[14] Pseudoprimes and a generalization of Artin's conjecture. Acta Arith. 41 (1982), 141-150. | MR | Zbl
,[15] Prime divisors of second order recurring sequences. Duke Math. J. 21 (1954), 607-614. | MR | Zbl
,[16] The maximal prime divisors of linear recurrences. Can. J. Math. 6 (1954), 455-462 | MR | Zbl
,