Nous considérons ici certains fibrés en droites métriques comme analogues des diviseurs sur les courbes. Van der Geer et Schoof ont défini une fonction
Number fields can be viewed as analogues of curves over fields. Here we use metrized line bundles as analogues of divisors on curves. Van der Geer and Schoof gave a definition of a function
@article{JTNB_2001__13_1_143_0, author = {Groenewegen, Richard P.}, title = {An arithmetic analogue of {Clifford's} theorem}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {143--156}, publisher = {Universit\'e Bordeaux I}, volume = {13}, number = {1}, year = {2001}, mrnumber = {1838077}, zbl = {1069.11044}, language = {en}, url = {https://www.numdam.org/item/JTNB_2001__13_1_143_0/} }
TY - JOUR AU - Groenewegen, Richard P. TI - An arithmetic analogue of Clifford's theorem JO - Journal de théorie des nombres de Bordeaux PY - 2001 SP - 143 EP - 156 VL - 13 IS - 1 PB - Université Bordeaux I UR - https://www.numdam.org/item/JTNB_2001__13_1_143_0/ LA - en ID - JTNB_2001__13_1_143_0 ER -
Groenewegen, Richard P. An arithmetic analogue of Clifford's theorem. Journal de théorie des nombres de Bordeaux, Tome 13 (2001) no. 1, pp. 143-156. https://www.numdam.org/item/JTNB_2001__13_1_143_0/
[1] The function h° for quadratic number fields. These proceedings.
,[2] Algebraic Curves. Addison Wesley, 1989. | MR | Zbl
,[3] Effectivity of Arakelov Divisors and the Theta Divisor of a Number Field. Preprint 1999, version 3. URL: "http://xxx.lanl.gov/abs/math/9802121" . | MR
, ,[4] Algebraic Geometry. Springer-Verlag, 1977. | MR | Zbl
,[5] Algebraische Zahlentheorie. Springer-Verlag, 1992. | Zbl
,