Nous expliquons les algorithmes qui nous ont permis de vérifier que tout entier congru à
We explain the algorithms that we have implemented to show that all integers congruent to
@article{JTNB_2000__12_2_411_0, author = {Deshouillers, Jean-Marc and Hennecart, Fran\c{c}ois and Landreau, Bernard}, title = {Waring's problem for sixteen biquadrates. {Numerical} results}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {411--422}, publisher = {Universit\'e Bordeaux I}, volume = {12}, number = {2}, year = {2000}, mrnumber = {1823193}, zbl = {0972.11093}, language = {en}, url = {https://www.numdam.org/item/JTNB_2000__12_2_411_0/} }
TY - JOUR AU - Deshouillers, Jean-Marc AU - Hennecart, François AU - Landreau, Bernard TI - Waring's problem for sixteen biquadrates. Numerical results JO - Journal de théorie des nombres de Bordeaux PY - 2000 SP - 411 EP - 422 VL - 12 IS - 2 PB - Université Bordeaux I UR - https://www.numdam.org/item/JTNB_2000__12_2_411_0/ LA - en ID - JTNB_2000__12_2_411_0 ER -
%0 Journal Article %A Deshouillers, Jean-Marc %A Hennecart, François %A Landreau, Bernard %T Waring's problem for sixteen biquadrates. Numerical results %J Journal de théorie des nombres de Bordeaux %D 2000 %P 411-422 %V 12 %N 2 %I Université Bordeaux I %U https://www.numdam.org/item/JTNB_2000__12_2_411_0/ %G en %F JTNB_2000__12_2_411_0
Deshouillers, Jean-Marc; Hennecart, François; Landreau, Bernard. Waring's problem for sixteen biquadrates. Numerical results. Journal de théorie des nombres de Bordeaux, Tome 12 (2000) no. 2, pp. 411-422. https://www.numdam.org/item/JTNB_2000__12_2_411_0/
[1] On Waring's problem for fourth powers. Ann. of Math. 40 (1939), 731-747. | JFM | MR | Zbl
,[2] Recent progress on Waring's theorem and its generalizations. Bull. Amer. Math. Soc. 39 (1933), 701-727. | JFM | Zbl
,[3] Problème de Waring pour les bicarrés : le point en 1984. Sém. Théor. Analyt. Nbres Paris, 1984-85, exp. 33. | Numdam | MR | Zbl
,[4] Numerical results for sums of five and seven biquadrates and consequences for sums of 19 biquadrates. Math. Comp. 61, 203 (1993), 195-207. | MR | Zbl
, ,[5] 7 373 170 279 850. Math. Comp. 69 (2000), 421-439. | MR | Zbl
, , ,[6] Bemerkungen zum Waringschen Problem. Math. Ann. 72 (1912), 387-399. | JFM | MR
,[7] A numerical approach to Waring's problem for fourth powers. Ph.D., The University of Michigan, 1973.
,[8] Waring's problem for twenty-two biquadrates. Trans. Amer. Math. Soc. 193 (1974), 427-430. | MR | Zbl
,