Flajolet and Richmond have invented a method to solve a large class of divide-and-conquer recursions. The essential part of it is the asymptotic analysis of a certain generating function for by means of the Mellin transform. In this paper this type of analysis is performed for a reasonably large class of generating functions fulfilling a functional equation with polynomial coefficients. As an application, the average life time of a party of people is computed, where each person advances one step or dies with equal probabilities, and an additional “killer” can kill at any level up to survivors, according to his probability distribution.
@article{JTNB_1993__5_2_365_0, author = {Grabner, P. J. and Prodinger, H. and Tichy, R. F.}, title = {Asymptotic analysis of a class of functional equations and applications}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {365--381}, publisher = {Universit\'e Bordeaux I}, volume = {5}, number = {2}, year = {1993}, mrnumber = {1265911}, zbl = {0797.39008}, language = {en}, url = {http://www.numdam.org/item/JTNB_1993__5_2_365_0/} }
TY - JOUR AU - Grabner, P. J. AU - Prodinger, H. AU - Tichy, R. F. TI - Asymptotic analysis of a class of functional equations and applications JO - Journal de théorie des nombres de Bordeaux PY - 1993 SP - 365 EP - 381 VL - 5 IS - 2 PB - Université Bordeaux I UR - http://www.numdam.org/item/JTNB_1993__5_2_365_0/ LA - en ID - JTNB_1993__5_2_365_0 ER -
%0 Journal Article %A Grabner, P. J. %A Prodinger, H. %A Tichy, R. F. %T Asymptotic analysis of a class of functional equations and applications %J Journal de théorie des nombres de Bordeaux %D 1993 %P 365-381 %V 5 %N 2 %I Université Bordeaux I %U http://www.numdam.org/item/JTNB_1993__5_2_365_0/ %G en %F JTNB_1993__5_2_365_0
Grabner, P. J.; Prodinger, H.; Tichy, R. F. Asymptotic analysis of a class of functional equations and applications. Journal de théorie des nombres de Bordeaux, Tome 5 (1993) no. 2, pp. 365-381. http://www.numdam.org/item/JTNB_1993__5_2_365_0/
[1] Introduction to Analytic Number Theory, Springer, New York, 1984. | MR | Zbl
,[2] Mellin Transforms and Asymptotics: Digital Sums, Theoret. Comput. Sci. (to appear). | MR | Zbl
, , , and ,[3] Generalized Digital Trees and Their Difference-Differential Equations, Random Structures and Algorithms 3 (1992), 305-320. | MR | Zbl
and ,[4] Some Uses of the Mellin Integral Transform in the Analysis of Algorithms, Combinatorial Algorithms on Words (A. Apostolico and Z. Galil, eds.), Springer, New York, 1985. | MR | Zbl
, and ,[5] Singularity Analysis of Generating Functions, SIAM J. Disc. Math. 3 (1990), 216-240. | MR | Zbl
and ,[6] Average-Case Analysis of Algorithms and Data Structures, Handbook of Theoretical Computer Science Vol. A "Algorithms and Complexity" North-Holland, 1990, 431-524. | MR | Zbl
and ,[7] The Art of Computer Science Vol. 3, Addison Wesley, Reading, MA, 1973.
,[8] Evolution of Random Search Trees, Wiley-Interscience Series in Discrete Mathematics and Optimization, New York, 1992. | MR | Zbl
,[9] On q-Additive Functions, II, Proc. Japan Acad. 59 (1983), 441-444. | MR | Zbl
and ,[10] How to, Advance on a Staircase by Coin Flippings,, Proceedings "Fibonacci Numbers and Applications 5" (1992) (to appear). | Zbl
,[11] A Course in Modern Analysis, Cambridge University Press, 1927. | JFM
and ,