Une malencontreuse erreur entache la preuve, et l’énoncé, de la Proposition 5.1 de l’article mentionné en titre. Celle-ci affecte un sens d’implication du théorème principal. Nous en donnons ici une correction, qui indique que, étant donné un sous-groupe quasi-convexe d’un groupe hyperbolique, ou relativement hyperbolique, la collection des saturations des intersections multiples (et non pas des intersections multiples elles-mêmes) fournit une structure relativement hyperbolique graduée.
There is an unfortunate mistake in the statement and the proof of Proposition 5.1 of [DM17]. This affects one direction of the implications of the main theorem. A correction is given, that states that given a quasi-convex subgroup of a hyperbolic (or relatively hyperbolic) group, the graded relative hyperbolic structure holds with respect to saturations of -fold intersections, that are stabilizers of limit sets of -fold intersections.
Accepté le :
Publié le :
DOI : 10.5802/jep.97
Keywords: Quasi-convex subgroups, hyperbolic groups, relatively hyperbolic groups, convex cocompact groups
Mot clés : Sous-groupes quasi-convexes, groupes hyperboliques, groupes relativement hyperboliques, groupes convexes cocompacts
@article{JEP_2019__6__425_0, author = {Dahmani, Fran\c{c}ois and Mj, Mahan}, title = {Corrigendum to {{\textquotedblleft}Height} graded relative hyperbolicity and quasiconvexity{\textquotedblright}}, journal = {Journal de l{\textquoteright}\'Ecole polytechnique - Math\'ematiques}, pages = {425--432}, publisher = {Ecole polytechnique}, volume = {6}, year = {2019}, doi = {10.5802/jep.97}, zbl = {07070265}, language = {en}, url = {http://www.numdam.org/articles/10.5802/jep.97/} }
TY - JOUR AU - Dahmani, François AU - Mj, Mahan TI - Corrigendum to “Height graded relative hyperbolicity and quasiconvexity” JO - Journal de l’École polytechnique - Mathématiques PY - 2019 SP - 425 EP - 432 VL - 6 PB - Ecole polytechnique UR - http://www.numdam.org/articles/10.5802/jep.97/ DO - 10.5802/jep.97 LA - en ID - JEP_2019__6__425_0 ER -
%0 Journal Article %A Dahmani, François %A Mj, Mahan %T Corrigendum to “Height graded relative hyperbolicity and quasiconvexity” %J Journal de l’École polytechnique - Mathématiques %D 2019 %P 425-432 %V 6 %I Ecole polytechnique %U http://www.numdam.org/articles/10.5802/jep.97/ %R 10.5802/jep.97 %G en %F JEP_2019__6__425_0
Dahmani, François; Mj, Mahan. Corrigendum to “Height graded relative hyperbolicity and quasiconvexity”. Journal de l’École polytechnique - Mathématiques, Tome 6 (2019), pp. 425-432. doi : 10.5802/jep.97. http://www.numdam.org/articles/10.5802/jep.97/
[DG18] Recognizing a relatively hyperbolic group by its Dehn fillings, Duke Math. J., Volume 167 (2018) no. 12, pp. 2189-2241 | DOI | MR | Zbl
[DM17] Height, graded relative hyperbolicity and quasiconvexity, J. Éc. polytech. Math., Volume 4 (2017), pp. 515-556 | DOI | MR
[DT17] The co-surface graph and the geometry of hyperbolic free group extensions, J. Topology, Volume 10 (2017) no. 2, pp. 447-482 | DOI | MR | Zbl
[DT18] Hyperbolic extensions of free groups, Geom. Topol., Volume 22 (2018) no. 1, pp. 517-570 | DOI | MR | Zbl
[Gro87] Hyperbolic groups, Essays in group theory (Math. Sci. Res. Inst. Publ.), Volume 8, Springer, New York, 1987, pp. 75-263 | DOI | MR | Zbl
[Osi06] Relatively hyperbolic groups: intrinsic geometry, algebraic properties, and algorithmic problems, Mem. Amer. Math. Soc., 179, no. 843, American Mathematical Society, Providence, RI, 2006 | MR | Zbl
[Raf14] Hyperbolicity in Teichmüller space, Geom. Topol., Volume 18 (2014) no. 5, pp. 3025-3053 | DOI | MR | Zbl
[Yan12] Limit sets of relatively hyperbolic groups, Geom. Dedicata, Volume 156 (2012), pp. 1-12 | DOI | MR | Zbl
Cité par Sources :