We will present a unique continuation result for solutions of second order differential equations of real principal type with critical potential in (where is the number of variables) across non-characteristic pseudo-convex hypersurfaces. To obtain unique continuation we prove Carleman estimates, this is achieved by constructing a parametrix for the operator conjugated by the Carleman exponential weight and investigating its boundedness properties.
@article{JEDP_2003____A6_0, author = {Dos Santos Ferreira, David}, title = {Sharp $L^p$ {Carleman} estimates and unique continuation}, journal = {Journ\'ees \'equations aux d\'eriv\'ees partielles}, eid = {6}, pages = {1--12}, publisher = {Universit\'e de Nantes}, year = {2003}, doi = {10.5802/jedp.620}, mrnumber = {2050592}, zbl = {02079441}, language = {en}, url = {http://www.numdam.org/articles/10.5802/jedp.620/} }
TY - JOUR AU - Dos Santos Ferreira, David TI - Sharp $L^p$ Carleman estimates and unique continuation JO - Journées équations aux dérivées partielles PY - 2003 SP - 1 EP - 12 PB - Université de Nantes UR - http://www.numdam.org/articles/10.5802/jedp.620/ DO - 10.5802/jedp.620 LA - en ID - JEDP_2003____A6_0 ER -
Dos Santos Ferreira, David. Sharp $L^p$ Carleman estimates and unique continuation. Journées équations aux dérivées partielles (2003), article no. 6, 12 p. doi : 10.5802/jedp.620. http://www.numdam.org/articles/10.5802/jedp.620/
[1] On estimates for the wave equation, Math. Z., 145, 251-254, 1975. | MR | Zbl
,[2] estimates for Fourier integral operators related to hyperbolic equations, Math. Z., 152, 273-286, 1977. | MR | Zbl
,[3] Inégalités de Carleman pour des indices critiques et applications, PhD thesis, University of Rennes, 2002.
,[4] Strichartz estimates for non-selfadjoint operators and applications, to appear in Comm. PDE.
,[5] Sharp Carleman estimates and unique continuation, preprint.
,[6] Carleman inequalities and the Heat operator II, Indiana Univ. Math. J., 50, 3, 2001, 1149-1169. | MR | Zbl
, ,[7] The analysis of linear partial differential operators IV, Springer-Verlag, 1985. | MR | Zbl
,[8] Some generalisations of the Strichartz-Brenner inequality, Leningrad Math. J., 1, 3, 693-726, 1990. | MR | Zbl
,[10] Unique continuation and absence of positive eigenvalues for Schrödinger operators, Adv. Math., 62, 1986, 118-134. | MR
, ,[11] Endpoint Strichartz estimates, Amer. J. of Math, 120, 955-980, 1998. | MR | Zbl
,[12] Carleman estimates and unique continuation for second order elliptic equations with non-smooth coefficients, Comm. Pure Appl. Math., 54, 3, 339-360, 2001. | MR | Zbl
, ,[13] Dispersive estimates for principally normal operators and applications to unique continuation, preprint, 2003. | MR
, ,[14] Uniform Sobolev inequalities and unique continuation for second order constant coefficient differential operators, Duke Math. J., 55, 2, 1987, 329-347. | MR | Zbl
, , ,[15] A parametrix construction for wave equations with coefficients, J. Ann. Inst. Fourier, 48, 797-835, 1998. | Numdam | MR | Zbl
,[16] Fourier integrals in classical analysis, Cambridge University Press, 1993. | MR | Zbl
,[17] Oscillatory integrals, Carleman inequalities and unique continuation for second order elliptic differential equations, J. Amer. Soc., 2, 1989, 491-516. | MR | Zbl
,[18] Uniqueness in Cauchy problems for hyperbolic differential operators, Trans. of AMS, 333, 2, 1992, 821-833. | MR | Zbl
,[19] Restriction of Fourier transform to quadratic surfaces and decay of solutions of wave equations, Duke Math. J., 44, 1977, 705-774. | Zbl
,[20] The spaces and unique continuation for solutions to the semilinear wave equation, Comm. PDE, 21, 1996, 841-887. | MR | Zbl
,[21] Introduction to pseudo-differential and Fourier integral operators, Plenum Press, 1980. | MR | Zbl
,[22] Unique continuation for | Δ u| ≤ V | ∇ u| and related problems, Rev. Mat. Iberoamericana 6, 3-4, 1990, 155-200. | MR | Zbl
,[23] Uniqueness and non-uniqueness in the Cauchy problem, Progress in Math., Birkhaüser, 1983. | Zbl
,Cité par Sources :