In the literature various types of restarting automata have been studied that are based on contextual rewriting. A word w is accepted by such an automaton if, starting from the initial configuration that corresponds to input w, the word w is reduced to the empty word by a finite number of applications of these contextual rewritings. This approach is reminiscent of the notion of McNaughton families of languages. Here we put the aforementioned types of restarting automata into the context of McNaughton families of languages, relating the classes of languages accepted by these automata in particular to the class GCSL of growing context-sensitive languages and to the class CRL of Church-Rosser languages.
Mots-clés : restarting automaton, contextual rewriting, mcnaughton family of languages
@article{ITA_2014__48_1_61_0, author = {Otto, Friedrich and \v{C}erno, Peter and Mr\'az, Franti\v{s}ek}, title = {On the classes of languages accepted by limited context restarting automata}, journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications}, pages = {61--84}, publisher = {EDP-Sciences}, volume = {48}, number = {1}, year = {2014}, doi = {10.1051/ita/2014001}, mrnumber = {3195789}, language = {en}, url = {http://www.numdam.org/articles/10.1051/ita/2014001/} }
TY - JOUR AU - Otto, Friedrich AU - Černo, Peter AU - Mráz, František TI - On the classes of languages accepted by limited context restarting automata JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications PY - 2014 SP - 61 EP - 84 VL - 48 IS - 1 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/ita/2014001/ DO - 10.1051/ita/2014001 LA - en ID - ITA_2014__48_1_61_0 ER -
%0 Journal Article %A Otto, Friedrich %A Černo, Peter %A Mráz, František %T On the classes of languages accepted by limited context restarting automata %J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications %D 2014 %P 61-84 %V 48 %N 1 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/ita/2014001/ %R 10.1051/ita/2014001 %G en %F ITA_2014__48_1_61_0
Otto, Friedrich; Černo, Peter; Mráz, František. On the classes of languages accepted by limited context restarting automata. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 48 (2014) no. 1, pp. 61-84. doi : 10.1051/ita/2014001. http://www.numdam.org/articles/10.1051/ita/2014001/
[1] Learning restricted restarting automata using genetic algorithm. Master's thesis, Charles University. Faculty of Mathematics and Physics, Prague, Czech (2010).
,[2] Learning limited context restarting automata by genetic algorithms, in Theorietag, edited by J. Dassow and B. Truthe. Otto-von-Guericke-Universität, Magdeburg (2011) 1-4.
and ,[3] McNaughton families of languages. Theoret. Comput. Sci. 290 (2003) 1581-1628. | MR | Zbl
, , and ,[4] String-Rewriting Systems. Springer, New York (1993). | MR | Zbl
and ,[5] Regular canonical systems. Arch. f. Math. Logik Grundlagenf. 6 (1964) 91-111. | EuDML | MR | Zbl
,[6] Wachsende kontext-sensitive Sprachen. Habilitationsschrift. Fakultät für Mathematik und Informatik, Universität Würzburg (1996).
,[7] Growing context-sensitive languages and Church-Rosser languages. Inf. Comput. 141 (1998) 1-36. | MR | Zbl
and ,[8] Learning correctness preserving reduction analysis. BSc Project, Charles University. Faculty of Mathematics and Physics, Prague, Czech (2003).
,[9] Clearing restarting automata. Fund. Inf. 104 (2010) 17-54. | MR | Zbl
and ,[10] Δ-clearing restarting automata and CFL, in edited by G. Mauri and A. Leporati. DLT 2011, in vol. 6795 of Lect. Notes Comput. Sci. Springer, Berlin (2011) 153-164. | Zbl
and ,[11] Membership for growing context-sensitive grammars is polynomial. J. Comput. System Sci. 33 (1986) 456-472. | MR | Zbl
and ,[12] Deleting string rewriting systems preserve regularity. Theoret. Comput. Sci. 327 (2004) 301-317. | MR | Zbl
and ,[13] Learning restarting automata by genetic algorithms, in SOFSEM 2002: Student Research Forum, edited by M. Bieliková. Masaryk University, Brno (2002) 15-20.
,[14] Restarting automata, FCT'95, in vol. 965 of Lect. Notes Comput. Sci., edited by H. Reichel. Springer, Berlin (1995) 283-292. | MR
, , and ,[15] On monotonic automata with a restart operation. J. Autom. Lang. Comb. 4 (1999) 287-311. | MR | Zbl
, , and .[16] Simple word problems in universal algebras, in Comput. Problems in Abstract Algebra, edited by J. Leech. Pergamon Press, New York (1970) 263-297. | MR | Zbl
and ,[17] On McNaughton families of languages that are specified by some variants of monadic string-rewriting systems. Fund. Inf. 112 (2011) 219-238. | MR | Zbl
and ,[18] Church-Rosser Thue systems and formal languages. J. Assoc. Comput. Mach. 35 (1988) 324-344. | MR | Zbl
, and ,[19] Learning analysis by reduction from positive data, in ICGI 2006, in vol. 4201 of Lect. Notes Comput. Sci., edited by Y. Sakakibara, S. Kobayashi, K. Sato, T. Nishino and E. Tomita. Springer, Berlin (2006) 125-136. | MR | Zbl
, and ,[20] The Church-Rosser languages are the deterministic variants of the growing context-sensitive languages. Inform. Comput. 197 (2005) 1-21. | MR | Zbl
and ,[21] The growing context-sensitive languages are the acyclic context-sensitive languages, in DLT 2002, in vol. 2295 of Lect. Notes Comput. Sci., edited by W. Kuich, G. Rozenberg and A. Salomaa. Springer, Berlin (2002) 197-205. | MR | Zbl
and ,[22] On deciding the confluence of a finite string-rewriting system on a given congruence class. J. Comput. System Sci. 35 (1987) 285-310. | MR | Zbl
,[23] Restarting automata, Recent Advances in Formal Languages and Applications, in vol. 25 of Studies in Comput. Intelligence, edited by Z. Ésik, C. Martin-Vide and V. Mitrana. Springer, Berlin (2006) 269-303. | Zbl
,[24] Limited context restarting automata and McNaughton families of languages, in Fourth Workshop on Non-Classical Models for Automata and Applications (NCMA 2012), Proc., books@ocg.at, Band 290, edited by R. Freund, M. Holzer, B. Truthe and U. Ultes-Nitsche. Oesterreichische Computer Gesellschaft, Wien (2012) 165-180.
, and ,[25] The context-splittable normal form for Church-Rosser language systems. Inform. Comput. 183 (2003) 245-274. | MR | Zbl
,Cité par Sources :