On the growth rates of complexity of threshold languages
RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 44 (2010) no. 1, pp. 175-192.

Threshold languages, which are the (k/(k-1))+-free languages over k-letter alphabets with k ≥ 5, are the minimal infinite power-free languages according to Dejean's conjecture, which is now proved for all alphabets. We study the growth properties of these languages. On the base of obtained structural properties and computer-assisted studies we conjecture that the growth rate of complexity of the threshold language over k letters tends to a constant α^1.242 as k tends to infinity.

DOI : 10.1051/ita/2010012
Classification : 68Q70, 68R15
Mots-clés : power-free languages, Dejean's conjecture, threshold languages, combinatorial complexity, growth rate
@article{ITA_2010__44_1_175_0,
     author = {Shur, Arseny M. and Gorbunova, Irina A.},
     title = {On the growth rates of complexity of threshold languages},
     journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications},
     pages = {175--192},
     publisher = {EDP-Sciences},
     volume = {44},
     number = {1},
     year = {2010},
     doi = {10.1051/ita/2010012},
     mrnumber = {2604942},
     zbl = {1184.68341},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/ita/2010012/}
}
TY  - JOUR
AU  - Shur, Arseny M.
AU  - Gorbunova, Irina A.
TI  - On the growth rates of complexity of threshold languages
JO  - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
PY  - 2010
SP  - 175
EP  - 192
VL  - 44
IS  - 1
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/ita/2010012/
DO  - 10.1051/ita/2010012
LA  - en
ID  - ITA_2010__44_1_175_0
ER  - 
%0 Journal Article
%A Shur, Arseny M.
%A Gorbunova, Irina A.
%T On the growth rates of complexity of threshold languages
%J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
%D 2010
%P 175-192
%V 44
%N 1
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/ita/2010012/
%R 10.1051/ita/2010012
%G en
%F ITA_2010__44_1_175_0
Shur, Arseny M.; Gorbunova, Irina A. On the growth rates of complexity of threshold languages. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 44 (2010) no. 1, pp. 175-192. doi : 10.1051/ita/2010012. https://www.numdam.org/articles/10.1051/ita/2010012/

[1] F.-J. Brandenburg, Uniformly growing k-th power free homomorphisms. Theoret. Comput. Sci. 23 (1983) 69-82. | Zbl

[2] A. Carpi, On Dejean's conjecture over large alphabets. Theoret. Comput. Sci. 385 (2007) 137-151. | Zbl

[3] C. Choffrut, J. Karhumäki, Combinatorics of words, edited by G. Rosenberg and A. Salomaa. Handbook of formal languages, Vol. 1, Chap. 6. Springer, Berlin (1997) 329-438.

[4] M. Crochemore, F. Mignosi and A. Restivo, Automata and forbidden words. Inform. Process. Lett. 67 (1998) 111-117.

[5] J.D. Currie, N. Rampersad, Dejean's conjecture holds for n ≥ 27. RAIRO-Theor. Inf. Appl. 43 (2009) 775-778. | Zbl

[6] J.D. Currie, N. Rampersad, A proof of Dejean's conjecture, http://arxiv.org/PS_cache/arxiv/pdf/0905/0905.1129v3.pdf

[7] F. Dejean, Sur un Theoreme de Thue. J. Combin. Theory Ser. A 13 (1972) 90-99. | Zbl

[8] A. Ehrenfeucht and G. Rozenberg, On subword complexities of homomorphic images of languages. RAIRO Inform. Theor. 16 (1982) 303-316. | Numdam | Zbl

[9] M. Lothaire, Combinatorics on words. Addison-Wesley (1983). | Zbl

[10] M. Mohammad-Noori and J.D. Currie, Dejean's conjecture and Sturmian words. Eur. J. Combin. 28 (2007) 876-890. | Zbl

[11] J. Moulin-Ollagnier, Proof of Dejean's Conjecture for Alphabets with 5, 6, 7, 8, 9, 10 and 11 Letters. Theoret. Comput. Sci. 95 (1992) 187-205. | Zbl

[12] J.-J. Pansiot, À propos d'une conjecture de F. Dejean sur les répétitions dans les mots. Discrete Appl. Math. 7 (1984) 297-311. | Zbl

[13] M. Rao, Last Cases of Dejean's Conjecture, accepted to WORDS'2009.

[14] A.M. Shur, Rational approximations of polynomial factorial languages. Int. J. Found. Comput. Sci. 18 (2007) 655-665. | Zbl

[15] A.M. Shur, Combinatorial complexity of regular languages, Proceedings of CSR'2008. Lect. Notes Comput. Sci. 5010 (2008) 289-301. | Zbl

[16] A.M. Shur, Growth rates of complexity of power-free languages. Submitted to Theoret. Comput. Sci. (2008). | Zbl

[17] A.M. Shur, Comparing complexity functions of a language and its extendable part. RAIRO-Theor. Inf. Appl. 42 (2008) 647-655. | EuDML | Numdam | Zbl

[18] A. Thue, Über unendliche Zeichenreihen, Kra. Vidensk. Selsk. Skrifter. I. Mat.-Nat. Kl., Christiana 7 (1906) 1-22. | JFM

  • Shur, Arseny M. Non-Constructive Upper Bounds for Repetition Thresholds, Theory of Computing Systems, Volume 68 (2024) no. 6, p. 1487 | DOI:10.1007/s00224-024-10187-7
  • Shur, Arseny M. Approaching Repetition Thresholds via Local Resampling and Entropy Compression, Developments in Language Theory, Volume 13911 (2023), p. 219 | DOI:10.1007/978-3-031-33264-7_18
  • Dvořáková, L'ubomíra; Pelantová, Edita; Opočenská, Daniela; Shur, Arseny M. On minimal critical exponent of balanced sequences, Theoretical Computer Science, Volume 922 (2022), p. 158 | DOI:10.1016/j.tcs.2022.04.021
  • Petrova, Elena A.; Shur, Arseny M. Branching Densities of Cube-Free and Square-Free Words, Algorithms, Volume 14 (2021) no. 4, p. 126 | DOI:10.3390/a14040126
  • Petrova, Elena A.; Shur, Arseny M. Branching Frequency and Markov Entropy of Repetition-Free Languages, Developments in Language Theory, Volume 12811 (2021), p. 328 | DOI:10.1007/978-3-030-81508-0_27
  • Shallit, Jeffrey; Shur, Arseny Subword complexity and power avoidance, Theoretical Computer Science, Volume 792 (2019), p. 96 | DOI:10.1016/j.tcs.2018.09.010
  • Ochem, Pascal; Rao, Michaël; Rosenfeld, Matthieu Avoiding or Limiting Regularities in Words, Sequences, Groups, and Number Theory (2018), p. 177 | DOI:10.1007/978-3-319-69152-7_5
  • Shur, Arseny M. Growth of Power-Free Languages over Large Alphabets, Theory of Computing Systems, Volume 54 (2014) no. 2, p. 224 | DOI:10.1007/s00224-013-9512-x
  • Shur, Arseny M. Growth properties of power-free languages, Computer Science Review, Volume 6 (2012) no. 5-6, p. 187 | DOI:10.1016/j.cosrev.2012.09.001
  • GORBUNOVA, IRINA A.; SHUR, ARSENY M. ON PANSIOT WORDS AVOIDING 3-REPETITIONS, International Journal of Foundations of Computer Science, Volume 23 (2012) no. 08, p. 1583 | DOI:10.1142/s0129054112400631
  • Tunev, Igor N.; Shur, Arseny M. On Two Stronger Versions of Dejean’s Conjecture, Mathematical Foundations of Computer Science 2012, Volume 7464 (2012), p. 800 | DOI:10.1007/978-3-642-32589-2_69
  • Shur, Arseny M. Growth Properties of Power-Free Languages, Developments in Language Theory, Volume 6795 (2011), p. 28 | DOI:10.1007/978-3-642-22321-1_3
  • Gorbunova, Irina A.; Shur, Arseny M. On Pansiot Words Avoiding 3-Repetitions, Electronic Proceedings in Theoretical Computer Science, Volume 63 (2011), p. 138 | DOI:10.4204/eptcs.63.19
  • SHUR, ARSENY M. ON THE EXISTENCE OF MINIMAL β-POWERS, International Journal of Foundations of Computer Science, Volume 22 (2011) no. 07, p. 1683 | DOI:10.1142/s0129054111008969
  • Shur, Arseny M. Growth of Power-Free Languages over Large Alphabets, Computer Science – Theory and Applications, Volume 6072 (2010), p. 350 | DOI:10.1007/978-3-642-13182-0_35
  • Shur, Arseny M. On the Existence of Minimal β-Powers, Developments in Language Theory, Volume 6224 (2010), p. 411 | DOI:10.1007/978-3-642-14455-4_37

Cité par 16 documents. Sources : Crossref