The algebraic counterpart of the Wagner hierarchy consists of a well-founded and decidable classification of finite pointed
Mots-clés :
@article{ITA_2009__43_3_463_0, author = {Cabessa, J\'er\'emie and Duparc, Jacques}, title = {A game theoretical approach to the algebraic counterpart of the {Wagner} hierarchy : part {II}}, journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications}, pages = {463--515}, publisher = {EDP-Sciences}, volume = {43}, number = {3}, year = {2009}, doi = {10.1051/ita/2009007}, mrnumber = {2541208}, zbl = {1175.03022}, language = {en}, url = {https://www.numdam.org/articles/10.1051/ita/2009007/} }
TY - JOUR AU - Cabessa, Jérémie AU - Duparc, Jacques TI - A game theoretical approach to the algebraic counterpart of the Wagner hierarchy : part II JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications PY - 2009 SP - 463 EP - 515 VL - 43 IS - 3 PB - EDP-Sciences UR - https://www.numdam.org/articles/10.1051/ita/2009007/ DO - 10.1051/ita/2009007 LA - en ID - ITA_2009__43_3_463_0 ER -
%0 Journal Article %A Cabessa, Jérémie %A Duparc, Jacques %T A game theoretical approach to the algebraic counterpart of the Wagner hierarchy : part II %J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications %D 2009 %P 463-515 %V 43 %N 3 %I EDP-Sciences %U https://www.numdam.org/articles/10.1051/ita/2009007/ %R 10.1051/ita/2009007 %G en %F ITA_2009__43_3_463_0
Cabessa, Jérémie; Duparc, Jacques. A game theoretical approach to the algebraic counterpart of the Wagner hierarchy : part II. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 43 (2009) no. 3, pp. 463-515. doi : 10.1051/ita/2009007. https://www.numdam.org/articles/10.1051/ita/2009007/
[1] An infinite game over
[2] Chains and superchains in
[3] Chains and superchains for
[4] The Wagner hierarchy. Int. J. Algebra Comput. 9 (1999) 597-620. | MR | Zbl
and ,[5] Wadge hierarchy and Veblen hierarchy. Part I: Borel sets of finite rank. J. Symbolic Logic 66 (2001) 56-86. | MR | Zbl
,
[6] A hierarchy of deterministic context-free
[7] Wadge hierarchy and Veblen hierarchy. Part II: Borel sets of infinite rank (to appear). | Zbl
,
[8] The missing link for
[9] An effective extension of the Wagner hierarchy to blind counter automata. In Computer Science Logic (Paris, 2001); Lect. Notes Comput. Sci. 2142 (2001) 369-383. | Zbl
,[10] Borel ranks and Wadge degrees of context free omega languages. In New Computational Paradigms, First Conference on Computability in Europe, CiE. Lect. Notes Comput. Sci. 2142 (2005) 129-138. | Zbl
,[11] Classical descriptive set theory, Graduate Texts in Mathematics 156. Springer-Verlag, New York (1995). | Zbl
,[12] Set theory. An introduction to independence proofs. 2nd print. Studies in Logic and the Foundations of Mathematics 102. North-Holland (1983) 313. | Zbl
,[13] Application of model theoretic games to discrete linear orders and finite automata. Inform. Control 33 (1977) 281-303. | MR | Zbl
,[14] Descriptive set theory. Studies in Logic and the Foundations of Mathematics 100. North-Holland Publishing Company (1980) 637. | MR | Zbl
,[15] First-order logic and star-free sets. J. Comput. System Sci. 32 (1986) 393-406. | MR | Zbl
and ,[16] Infinite words. Pure Appl. Mathematics 141. Elsevier (2004). | Zbl
and ,[17] Varieties of formal languages. North Oxford, London and Plenum, New-York (1986). | MR | Zbl
,
[18] Fine hierarchy of regular
[19] Star-free regular sets of
[20] Reducibility and determinateness on the Baire space. Ph.D. thesis, University of California, Berkeley (1983).
,
[21] On
[22] An Eilenberg theorem for
[23] Computing the Wadge degree, the Lifshitz degree, and the Rabin index of a regular language of infinite words in polynomial time. In TAPSOFT '95: Theory and Practive of Software Development, edited by Peter D. Mosses, M. Nielsen, M.I. Schwartzbach. Lect. Notes Comput. Sci. 915 (1995) 288-302.
and ,Cité par Sources :