The algebraic study of formal languages shows that
Mots-clés :
@article{ITA_2009__43_3_443_0, author = {Cabessa, J\'er\'emie and Duparc, Jacques}, title = {A game theoretical approach to the algebraic counterpart of the {Wagner} hierarchy : part {I}}, journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications}, pages = {443--461}, publisher = {EDP-Sciences}, volume = {43}, number = {3}, year = {2009}, doi = {10.1051/ita/2009004}, mrnumber = {2541207}, zbl = {1175.03021}, language = {en}, url = {https://www.numdam.org/articles/10.1051/ita/2009004/} }
TY - JOUR AU - Cabessa, Jérémie AU - Duparc, Jacques TI - A game theoretical approach to the algebraic counterpart of the Wagner hierarchy : part I JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications PY - 2009 SP - 443 EP - 461 VL - 43 IS - 3 PB - EDP-Sciences UR - https://www.numdam.org/articles/10.1051/ita/2009004/ DO - 10.1051/ita/2009004 LA - en ID - ITA_2009__43_3_443_0 ER -
%0 Journal Article %A Cabessa, Jérémie %A Duparc, Jacques %T A game theoretical approach to the algebraic counterpart of the Wagner hierarchy : part I %J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications %D 2009 %P 443-461 %V 43 %N 3 %I EDP-Sciences %U https://www.numdam.org/articles/10.1051/ita/2009004/ %R 10.1051/ita/2009004 %G en %F ITA_2009__43_3_443_0
Cabessa, Jérémie; Duparc, Jacques. A game theoretical approach to the algebraic counterpart of the Wagner hierarchy : part I. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 43 (2009) no. 3, pp. 443-461. doi : 10.1051/ita/2009004. https://www.numdam.org/articles/10.1051/ita/2009004/
[1] Equivalence between Wadge and Lipschitz determinacy. Ann. Pure Appl. Logic 123 (2003) 163-192. | MR | Zbl
,
[2] An infinite game over
[3] Chains and superchains for
[4] The Wadge-Wagner hierarchy of
[5] The Wagner hierarchy. Int. J. Algebra Comput. 9 (1999) 597-620. | MR | Zbl
and ,[6] Wadge hierarchy and Veblen hierarchy. I. Borel sets of finite rank. J. Symbolic Logic 66 (2001) 56-86. | MR | Zbl
,
[7] The missing link for
[8] Application of model theoretic games to discrete linear orders and finite automata. Inform. Control 33 (1977) 281-303. | MR | Zbl
,[9] Borel determinacy. Ann. Math. 102 (1975) 363-371. | MR | Zbl
,[10] R.t McNaughton and S.A. Papert, Counter-Free Automata (M.I.T. research monograph No. 65). The MIT Press (1971). | MR | Zbl
[11] First-order logic and star-free sets. J. Comput. System Sci. 32 (1986) 393-406. | MR | Zbl
and ,[12] Semigroups and automata on infinite words. In Semigroups, formal languages and groups (York, 1993). Kluwer Acad. Publ., Dordrecht (1995) 49-72. | MR | Zbl
and ,[13] Infinite words. Pure and Applied Mathematics 141, Elsevier (2004). | Zbl
and ,[14] Logic, semigroups and automata on words. Ann. Math. Artif. Intell. 16 (1996) 343-384. | MR | Zbl
,[15] Positive varieties and infinite words. in edited by Latin'98, edited by C.L. Lucchesi and A.V. Moura. Lect. Notes Comput. Sci. 1380 (1998) 76-87. | MR | Zbl
,[16] Monoïdes pointés. Semigroup Forum 18 (1979) 235-264. | Zbl
,[17] On finite monoids having only trivial subgroups. Inform. Control 8 (1965) 190-194. | MR | Zbl
,
[18] Fine hierarchy of regular
[19] Star-free regular sets of
[20] Degrees of complexity of subsets of the baire space. Notice A.M.S. (1972) A714-A715.
,[21] Reducibility and determinateness on the Baire space. Ph.D. thesis, University of California, Berkeley (1983).
,
[22] On
[23] An Eilenberg theorem for
[24] Computing the Wadge degree, the Lifshitz degree, and the Rabin index of a regular language of infinite words in polynomial time, in TAPSOFT '95: Theory and Practive of Software Development, edited by P.D. Mosses, M. Nielsen and M.I. Schwartzbach. Lect. Notes Comput. Sci. 915 (1995) 288-302.
and ,Cité par Sources :