Let
Mots-clés : substitutive languages, balanced pairs, algorithm on words
@article{ITA_2008__42_4_663_0, author = {Bernat, Julien}, title = {Study of irreducible balanced pairs for substitutive languages}, journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications}, pages = {663--678}, publisher = {EDP-Sciences}, volume = {42}, number = {4}, year = {2008}, doi = {10.1051/ita:2007062}, mrnumber = {2458700}, zbl = {1155.68060}, language = {en}, url = {https://www.numdam.org/articles/10.1051/ita:2007062/} }
TY - JOUR AU - Bernat, Julien TI - Study of irreducible balanced pairs for substitutive languages JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications PY - 2008 SP - 663 EP - 678 VL - 42 IS - 4 PB - EDP-Sciences UR - https://www.numdam.org/articles/10.1051/ita:2007062/ DO - 10.1051/ita:2007062 LA - en ID - ITA_2008__42_4_663_0 ER -
%0 Journal Article %A Bernat, Julien %T Study of irreducible balanced pairs for substitutive languages %J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications %D 2008 %P 663-678 %V 42 %N 4 %I EDP-Sciences %U https://www.numdam.org/articles/10.1051/ita:2007062/ %R 10.1051/ita:2007062 %G en %F ITA_2008__42_4_663_0
Bernat, Julien. Study of irreducible balanced pairs for substitutive languages. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 42 (2008) no. 4, pp. 663-678. doi : 10.1051/ita:2007062. https://www.numdam.org/articles/10.1051/ita:2007062/
[1] Balances for fixed points of primitive substitutions. Theoret. Comput. Sci. 307 (2003) 47-75. | MR | Zbl
,[2] Palindromic complexity of infinite words associated with simple Parry numbers. Ann. Inst. Fourier (Grenoble) 56 (2006) 2131-2160. | Numdam | MR | Zbl
, , and ,[3] Pisot substitutions and Rauzy fractals. Bull. Belg. Math. Soc. Simon Stevin 8 (2001) 181-207. | MR | Zbl
and ,
[4] Représentation géométrique de suites de complexité
[5] Tilings, quasicrystals, discrete planes, generalized substitutions, and multidimensional continued fractions, in Discrete models: combinatorics, computation, and geometry (Paris, 2001). Discrete Math. Theor. Comput. Sci. Proc., AA, pp. 059-078 (electronic). Maison Inform. Math. Discrèt. (MIMD), Paris (2001). | MR | Zbl
, , and ,
[6] Discrete planes,
[7] Proximality in Pisot Tiling Spaces. Fund. Math. 194 (2007) 191-238. | MR | Zbl
and ,[8] Geometric theory of unimodular Pisot substitutions. Amer. J. Math. 128 (2006) 1219-1282. | MR | Zbl
and ,
[9] Symmetrized
[10] On super-coincidence condition of substitutions (2006) Preprint.
, and ,[11] Fibonacci words - a survey, in The Book of L, pp. 13-27. Springer-Verlag (1986). | Zbl
,[12] Lattices and multi-dimensional words. Theoret. Comput. Sci. 319 (2004) 177-202. | MR | Zbl
and ,[13] Geometric representation of substitutions of Pisot type. Trans. Amer. Math. Soc. 353 (2001) 5121-5144. | MR | Zbl
and ,[14] Imbalances in Arnoux-Rauzy sequences. Ann. Inst. Fourier (Grenoble) 50 (2000) 1265-1276. | Numdam | MR | Zbl
, and ,[15] A combinatorial property of the Fibonacci words. Inform. Process. Lett. 12 (1981) 193-195. | MR | Zbl
,[16] Palindromes in the Fibonacci word. Inform. Process. Lett. 55 (1995) 217-221. | MR | Zbl
,[17] Epi-Sturmian words and some constructions of de Luca and Rauzy. Theoret. Comput. Sci. 255 (2001) 539-553. | MR | Zbl
, and ,[18] A characterization of substitutive sequences using return words. Discrete Math. 179 (1998) 89-101. | MR | Zbl
,[19] Substitutional dynamical systems, Bratteli diagrams and dimension groups. Ergod. Theor. Dyn. Syst. 19 (1999) 953-993. | MR | Zbl
, and ,[20] Dépendance de systèmes de numération associés à des puissances d'un nombre de Pisot. Theoret. Comput. Sci. 158 (1996) 65-79. | MR | Zbl
,[21] Confluent linear numeration systems. Theoret. Comput. Sci. 106 (1992) 183-219. | MR | Zbl
,[22] Valeurs propres des systèmes dynamiques définis par des substitutions de longueur variable. Ergod. Theor. Dyn. Syst. 6 (1986) 529-540. | MR | Zbl
,[23] Atomic surfaces, tilings and coincidences I. Irreducible case. Israel J. Math. 153 (2006) 129-155. | MR | Zbl
and ,[24] On a characteristic property of Arnoux-Rauzy sequences. RAIRO-Theor. Inf. Appl. 36 (2002) 385-388. | Numdam | MR | Zbl
and ,[25] Some examples of adic transformations and automorphisms of substitutions. Selecta Math. Soviet. 11 (1992) 83-104. Selected translations. | MR | Zbl
,[26] Algebraic Combinatorics On Words. Cambridge University Press (2002). | MR | Zbl
,[27] Generalized balanced pair algorithm. Topology Proc. 28 (2004) 163-178. | MR | Zbl
,
[28] On the
[29] Substitutions in Dynamics, Arithmetics and Combinatoric, edited by V. Berthé, S. Ferenczi, C. Mauduit and A. Siegel. Lecture Notes in Mathematics 1794 (2002). | MR | Zbl
,[30] Substitution dynamical systems-spectral analysis. Lecture Notes in Mathematics 1294 (1987). | MR | Zbl
,[31] A generalization of Sturmian sequences: combinatorial structure and transcendence. Acta Arith. 95 (2000) 167-184. | MR | Zbl
and ,[32] Representations for real numbers and their ergodic properties. Acta Math. Acad. Sci. Hungar. 8 (1957) 477-493. | MR | Zbl
,[33] The Tribonacci substitution. INTEGERS Electronic Journal of Combinatorial Number Theory 3 (2005) 1553-1732. | MR | Zbl
and ,[34] Pure discrete spectrum for one-dimensional substitution systems of Pisot type. Canad. Math. Bull. 45 (2002) 697-710. | MR | Zbl
and ,[35] Self-affine tiling via substitution dynamical systems and Rauzy fractals. Pacific J. Math. 206 (2002) 465-485. | MR | Zbl
and ,[36] Groups, tilings and finite state automata. Summer 1989 AMS Colloquium Lectures (1989).
,[37] Balanced words. Bull. Belg. Math. Soc. Simon Stevin 10 (2003) S787-S805. | MR | Zbl
,Cité par Sources :