It is studied how taking the inverse image by a sliding block code affects the syntactic semigroup of a sofic subshift. The main tool are
Mots-clés : sofic subshift, conjugacy, weak equivalence,
@article{ITA_2008__42_3_481_0, author = {Chaubard, Laura and Costa, Alfredo}, title = {A new algebraic invariant for weak equivalence of sofic subshifts}, journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications}, pages = {481--502}, publisher = {EDP-Sciences}, volume = {42}, number = {3}, year = {2008}, doi = {10.1051/ita:2008015}, mrnumber = {2434031}, zbl = {1155.37009}, language = {en}, url = {https://www.numdam.org/articles/10.1051/ita:2008015/} }
TY - JOUR AU - Chaubard, Laura AU - Costa, Alfredo TI - A new algebraic invariant for weak equivalence of sofic subshifts JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications PY - 2008 SP - 481 EP - 502 VL - 42 IS - 3 PB - EDP-Sciences UR - https://www.numdam.org/articles/10.1051/ita:2008015/ DO - 10.1051/ita:2008015 LA - en ID - ITA_2008__42_3_481_0 ER -
%0 Journal Article %A Chaubard, Laura %A Costa, Alfredo %T A new algebraic invariant for weak equivalence of sofic subshifts %J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications %D 2008 %P 481-502 %V 42 %N 3 %I EDP-Sciences %U https://www.numdam.org/articles/10.1051/ita:2008015/ %R 10.1051/ita:2008015 %G en %F ITA_2008__42_3_481_0
Chaubard, Laura; Costa, Alfredo. A new algebraic invariant for weak equivalence of sofic subshifts. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 42 (2008) no. 3, pp. 481-502. doi : 10.1051/ita:2008015. https://www.numdam.org/articles/10.1051/ita:2008015/
[1] Finite semigroups and universal algebra, World Scientific, Singapore (1995), English translation. | MR | Zbl
,[2] A hierarchy of shift equivalent sofic shifts. Theoret. Comput. Sci. 345 (2005) 190-205. | MR | Zbl
, , and ,[3] The syntactic graph of a sofic shift is invariant under shift equivalence. Int. J. Algebra Comput. 16 (2006), 443-460. | MR | Zbl
, , and ,[4] A weak equivalence between shifts of finite type. Adv. Appl. Math. 29 (2002) 2, 162-171. | MR | Zbl
and ,[5] Minimal automaton for a factorial transitive rational language. Theoret. Comput. Sci. 67 (1985), 65-73. | MR | Zbl
,[6] Systèmes codés. Theoret. Comput. Sci. 44 (1986), 17-49. | MR | Zbl
and ,[7] Almost markov and shift equivalent sofic systems, Proceedings of Maryland Special Year in Dynamics 1986-87 (J.C. Alexander, ed.). Lect. Notes Math. 1342 (1988), pp. 33-93. | MR | Zbl
and ,[8] Codage symbolique, Masson (1993).
,[9] Wreath product and infinite words. J. Pure Appl. Algebra 153 (2000), 129-150. | MR | Zbl
,[10] L‘équivalence faible des systèmes sofiques, Master's thesis, LIAFA, Université Paris VII, July 2003, Rapport de stage de DEA.
,[11] Pseudovarieties defining classes of sofic subshifts closed under taking shift equivalent subshifts. J. Pure Appl. Algebra 209 (2007), 517-530. | MR | Zbl
,[12] Automata, languages and machines, vol. B, Academic Press, New York, 1976. | MR | Zbl
,[13] Sofic systems and graphs. Monatsh. Math. 80 (1975), 179-186. | EuDML | MR | Zbl
,[14] Endomorphims and automorphisms of the shift dynamical system. Math. Syst. Theor. 3 (1969), 320-375. | MR | Zbl
,[15] On sofic systems. i. Israel J. Math. 48 (1984), 305-330. | MR | Zbl
,[16] An introduction to symbolic dynamics and coding, Cambridge University Press, Cambridge (1996). | MR | Zbl
and ,[17] Topological conjugacy for sofic systems. Ergod. Theory Dyn. Syst. 6 (1986), 265-280. | MR | Zbl
,[18] Infinite words, Pure and Applied Mathematics, No. 141, Elsevier, London, 2004. | Zbl
and ,[19] Varieties of formal languages, Plenum, London (1986), English translation. | MR | Zbl
,[20] Syntactic semigroups, Handbook of Language Theory (G. Rozenberg and A. Salomaa, eds.), Springer (1997). | MR
,Cité par Sources :