Arithmetical complexity of a sequence is the number of words of length
Mots-clés : arithmetical complexity, infinite words, Toeplitz words, special factors, period doubling word, Legendre symbol, paperfolding word
@article{ITA_2006__40_4_569_0, author = {Avgustinovich, Sergey V. and Cassaigne, Julien and Frid, Anna E.}, title = {Sequences of low arithmetical complexity}, journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications}, pages = {569--582}, publisher = {EDP-Sciences}, volume = {40}, number = {4}, year = {2006}, doi = {10.1051/ita:2006041}, mrnumber = {2277050}, zbl = {1110.68116}, language = {en}, url = {https://www.numdam.org/articles/10.1051/ita:2006041/} }
TY - JOUR AU - Avgustinovich, Sergey V. AU - Cassaigne, Julien AU - Frid, Anna E. TI - Sequences of low arithmetical complexity JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications PY - 2006 SP - 569 EP - 582 VL - 40 IS - 4 PB - EDP-Sciences UR - https://www.numdam.org/articles/10.1051/ita:2006041/ DO - 10.1051/ita:2006041 LA - en ID - ITA_2006__40_4_569_0 ER -
%0 Journal Article %A Avgustinovich, Sergey V. %A Cassaigne, Julien %A Frid, Anna E. %T Sequences of low arithmetical complexity %J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications %D 2006 %P 569-582 %V 40 %N 4 %I EDP-Sciences %U https://www.numdam.org/articles/10.1051/ita:2006041/ %R 10.1051/ita:2006041 %G en %F ITA_2006__40_4_569_0
Avgustinovich, Sergey V.; Cassaigne, Julien; Frid, Anna E. Sequences of low arithmetical complexity. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 40 (2006) no. 4, pp. 569-582. doi : 10.1051/ita:2006041. https://www.numdam.org/articles/10.1051/ita:2006041/
[1] The number of factors in a paperfolding sequence. Bull. Austral. Math. Soc. 46 (1992) 23-32. | Zbl
,[2] Palindrome complexity. Theoret. Comput. Sci. 292 (2003) 9-31. | Zbl
, , and ,[3] Arithmetical complexity of infinite words, in Words, Languages & Combinatorics III, edited by M. Ito and T. Imaoka. Singapore, World Scientific Publishing, ICWLC 2000, Kyoto, Japan, March 14-18 (2003) 51-62.
, and ,[4] Sturmian words, in Algebraic combinatorics on words, edited by M. Lothaire. Cambridge University Press (2002). | MR
and ,[5] Number Theory. Uchpedgiz, Moscow (1960) (in Russian).
,[6] Complexité et facteurs spéciaux. Bull. Belg. Math. Soc. Simon Stevin 4 (1997) 67-88. | Zbl
,[7] On arithmetical complexity of Sturmian words, in Proc. WORDS 2005, Montreal (2005) 197-208.
and ,[8] Toeplitz words, generalized periodicity and periodically iterated morphisms. Eur. J. Combin. 18 (1997) 497-510. | Zbl
and ,[9] Local symmetries in the period doubling sequence. Discrete Appl. Math. 100 (2000) 115-121. | Zbl
,[10] Complexity of sequences and dynamical systems. Discrete Math. 206 (1999) 145-154. | MR | Zbl
,[11] A lower bound for the arithmetical complexity of Sturmian words, Siberian Electronic Mathematical Reports 2, 14-22 [Russian, English abstract]. | EuDML | MR | Zbl
,[12] Arithmetical complexity of symmetric D0L words. Theoret. Comput. Sci. 306 (2003) 535-542. | MR | Zbl
,[13] On Possible Growth of Arithmetical Complexity. RAIRO-Inf. Theor. Appl. 40 (2006) 443-458. | EuDML | Numdam | Zbl
,[14] Sequences of linear arithmetical complexity. Theoret. Comput. Sci. 339 (2005) 68-87. | MR | Zbl
,[15] Decimations and Sturmian words. Theor. Inform. Appl. 31 (1997) 271-290. | EuDML | Numdam | MR | Zbl
and ,[16] Maximal pattern complexity for discrete systems. Ergodic Theory Dynam. Syst. 22 (2002) 1201-1214. | MR | Zbl
and ,[17] Complexités de suites de Toeplitz. Discrete Math. 183 (1998) 161-183. | MR | Zbl
,[18] EuDML | Numdam | MR | Zbl
, , , , and , *-Sturmian words and complexity. J. Théor. Nombres Bordeaux 15 (2003) 767-804. |[19] Binary patterns in infinite binary words, in Formal and Natural Computing, edited by W. Brauer et al. Lect. Notes Comput. Sci. 2300, (2002) 107-116. | MR | Zbl
and ,
[20] On sets of integers containing no
- Complexity of Infinite Words, Machines, Computations, and Universality, Volume 15270 (2025), p. 1 | DOI:10.1007/978-3-031-81202-6_1
- Monochromatic arithmetic progressions in automatic sequences with group structure, Journal of Combinatorial Theory, Series A, Volume 203 (2024), p. 105831 | DOI:10.1016/j.jcta.2023.105831
- On monochromatic arithmetic progressions in binary words associated with pattern sequences, Theoretical Computer Science, Volume 1018 (2024), p. 114815 | DOI:10.1016/j.tcs.2024.114815
- Monochromatic arithmetic progressions in binary Thue–Morse-like words, Theoretical Computer Science, Volume 934 (2022), p. 65 | DOI:10.1016/j.tcs.2022.08.013
- Formulas for complexity, invariant measure and RQA characteristics of the period-doubling subshift, Communications in Nonlinear Science and Numerical Simulation, Volume 80 (2020), p. 104996 | DOI:10.1016/j.cnsns.2019.104996
- Recurrence Quantification Analysis of the Period-Doubling Sequence, International Journal of Bifurcation and Chaos, Volume 28 (2018) no. 14, p. 1850181 | DOI:10.1142/s021812741850181x
- On Arithmetic Index in the Generalized Thue-Morse Word, Combinatorics on Words, Volume 10432 (2017), p. 121 | DOI:10.1007/978-3-319-66396-8_12
- Bibliography, Formal Languages, Automata and Numeration Systems 1 (2014), p. 257 | DOI:10.1002/9781119008200.biblio
- Bibliography, Formal Languages, Automata and Numeration Systems 2 (2014), p. 193 | DOI:10.1002/9781119042853.biblio
- On maximal pattern complexity of some automatic words, Ergodic Theory and Dynamical Systems, Volume 31 (2011) no. 5, p. 1463 | DOI:10.1017/s0143385710000453
- Последовательности, близкие к периодическим, Успехи математических наук, Volume 64 (2009) no. 5, p. 21 | DOI:10.4213/rm9315
- Sturmian and Episturmian Words, Algebraic Informatics, Volume 4728 (2007), p. 23 | DOI:10.1007/978-3-540-75414-5_2
- On the arithmetical complexity of Sturmian words, Theoretical Computer Science, Volume 380 (2007) no. 3, p. 304 | DOI:10.1016/j.tcs.2007.03.022
Cité par 13 documents. Sources : Crossref