We divide infinite sequences of subword complexity
Mots-clés : transcendental numbers, subword complexity, Rauzy graph
@article{ITA_2006__40_3_459_0, author = {K\"arki, Tomi}, title = {Transcendence of numbers with an expansion in a subclass of complexity 2n + 1}, journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications}, pages = {459--471}, publisher = {EDP-Sciences}, volume = {40}, number = {3}, year = {2006}, doi = {10.1051/ita:2006034}, mrnumber = {2269204}, language = {en}, url = {https://www.numdam.org/articles/10.1051/ita:2006034/} }
TY - JOUR AU - Kärki, Tomi TI - Transcendence of numbers with an expansion in a subclass of complexity 2n + 1 JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications PY - 2006 SP - 459 EP - 471 VL - 40 IS - 3 PB - EDP-Sciences UR - https://www.numdam.org/articles/10.1051/ita:2006034/ DO - 10.1051/ita:2006034 LA - en ID - ITA_2006__40_3_459_0 ER -
%0 Journal Article %A Kärki, Tomi %T Transcendence of numbers with an expansion in a subclass of complexity 2n + 1 %J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications %D 2006 %P 459-471 %V 40 %N 3 %I EDP-Sciences %U https://www.numdam.org/articles/10.1051/ita:2006034/ %R 10.1051/ita:2006034 %G en %F ITA_2006__40_3_459_0
Kärki, Tomi. Transcendence of numbers with an expansion in a subclass of complexity 2n + 1. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 40 (2006) no. 3, pp. 459-471. doi : 10.1051/ita:2006034. https://www.numdam.org/articles/10.1051/ita:2006034/
[1] Sur la complexité des nombres algébriques. C. R. Acad. Sci. Paris, Ser. I 339 (2004) 11-14. | Zbl
, and ,[2] On the transcendence of real numbers with a regular expansion. J. Number Theory 103 (2003) 27-37. | Zbl
and ,[3] Nouveaux résultats de transcendence de réels à développements non aléatoire. Gazette des Mathématiciens 84 (2000) 19-34.
,[4] Algebraic irrational binary numbers cannot be fixed points of non-trivial constant length or primitive morphisms. J. Number Theory 69 (1998) 119-124. | Zbl
and ,
[5] Représentation géométrique de suites de complexité
[6] Transcendence of numbers with a low complexity expansion. J. Number Theory 67 (1997) 146-161. | Zbl
and ,[7] Symbolic dynamics II: Sturmian trajectories. Amer. J. Math. 62 (1940) 1-42. | JFM
and ,[8] Rational approximations to algebraic numbers. Mathematika 4 (1957) 125-131. | Zbl
,[9] A generalization of Sturmian sequences: combinatorial structure and transcendence. Acta Arith. 95 (2000), 167-184. | Zbl
and ,Cité par Sources :