A decomposition of a set
Mots-clés : Bernoulli sets, codes, decompositions, commutative equivalence
@article{ITA_2005__39_1_161_0, author = {Luca, Aldo de}, title = {Some decompositions of {Bernoulli} sets and codes}, journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications}, pages = {161--174}, publisher = {EDP-Sciences}, volume = {39}, number = {1}, year = {2005}, doi = {10.1051/ita:2005010}, mrnumber = {2132585}, zbl = {1073.94008}, language = {en}, url = {https://www.numdam.org/articles/10.1051/ita:2005010/} }
TY - JOUR AU - Luca, Aldo de TI - Some decompositions of Bernoulli sets and codes JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications PY - 2005 SP - 161 EP - 174 VL - 39 IS - 1 PB - EDP-Sciences UR - https://www.numdam.org/articles/10.1051/ita:2005010/ DO - 10.1051/ita:2005010 LA - en ID - ITA_2005__39_1_161_0 ER -
%0 Journal Article %A Luca, Aldo de %T Some decompositions of Bernoulli sets and codes %J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications %D 2005 %P 161-174 %V 39 %N 1 %I EDP-Sciences %U https://www.numdam.org/articles/10.1051/ita:2005010/ %R 10.1051/ita:2005010 %G en %F ITA_2005__39_1_161_0
Luca, Aldo de. Some decompositions of Bernoulli sets and codes. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 39 (2005) no. 1, pp. 161-174. doi : 10.1051/ita:2005010. https://www.numdam.org/articles/10.1051/ita:2005010/
[1] Theory of Codes. Academic Press, New York (1985). | MR | Zbl
and ,[2] Completions in measure of languages and related combinatorial problems. Theor. Comput. Sci. To appear. | MR | Zbl
and ,[3] On the triangle conjecture. Inform. Process. Lett. 14 (1982) 197-200. | Zbl
,[4] Some combinatorial results on Bernoulli sets and codes. Theor. Comput. Sci. 273 (2002) 143-165. | Zbl
,[5] Baïonnettes et cardinaux. Discrete Math. 39 (1982) 331-335. | Zbl
,[6] Un problème élémentaire de la théorie de l'Information, in Theorie de l'Information, Colloq. Internat. du CNRS No. 276, Cachan (1977) 249-260. | Zbl
and ,[7] A conjecture on sets of differences on integer pairs. J. Combin. Theory Ser. B 30 (1981) 91-93. | Zbl
and ,[8] A note on the triangle conjecture. J. Comb. Theory Ser. A 32 (1982) 106-109. | Zbl
and ,[9] A counterexample to the triangle conjecture. J. Comb. Theory Ser. A 38 (1985) 110-112. | Zbl
,- Coding by minimal linear grammars, Theoretical Computer Science, Volume 834 (2020), pp. 14-25 | DOI:10.1016/j.tcs.2020.01.032 | Zbl:1440.68147
Cité par 1 document. Sources : zbMATH