We show that some natural refinements of the Straubing and Brzozowski hierarchies correspond (via the so called leaf-languages) step by step to similar refinements of the polynomial-time hierarchy. This extends a result of Burtschik and Vollmer on relationship between the Straubing and the polynomial hierarchies. In particular, this applies to the Boolean hierarchy and the plus-hierarchy.
@article{ITA_2002__36_1_29_0, author = {Selivanov, Victor L.}, title = {Relating automata-theoretic hierarchies to complexity-theoretic hierarchies}, journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications}, pages = {29--42}, publisher = {EDP-Sciences}, volume = {36}, number = {1}, year = {2002}, doi = {10.1051/ita:2002003}, mrnumber = {1928157}, zbl = {1029.03027}, language = {en}, url = {https://www.numdam.org/articles/10.1051/ita:2002003/} }
TY - JOUR AU - Selivanov, Victor L. TI - Relating automata-theoretic hierarchies to complexity-theoretic hierarchies JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications PY - 2002 SP - 29 EP - 42 VL - 36 IS - 1 PB - EDP-Sciences UR - https://www.numdam.org/articles/10.1051/ita:2002003/ DO - 10.1051/ita:2002003 LA - en ID - ITA_2002__36_1_29_0 ER -
%0 Journal Article %A Selivanov, Victor L. %T Relating automata-theoretic hierarchies to complexity-theoretic hierarchies %J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications %D 2002 %P 29-42 %V 36 %N 1 %I EDP-Sciences %U https://www.numdam.org/articles/10.1051/ita:2002003/ %R 10.1051/ita:2002003 %G en %F ITA_2002__36_1_29_0
Selivanov, Victor L. Relating automata-theoretic hierarchies to complexity-theoretic hierarchies. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 36 (2002) no. 1, pp. 29-42. doi : 10.1051/ita:2002003. https://www.numdam.org/articles/10.1051/ita:2002003/
[1] Structural Complexity I, Vol. 11 of EATCS Monographs on Theoretical Computer Science. Springer-Verlag (1988). | MR | Zbl
, and ,[2] Structural Complexity II, Vol. 11 of EATCS Monographs on Theoretical Computer Science. Springer-Verlag (1990). | MR | Zbl
, and ,[3] On the acceptance power of regular languages. Theoret. Comput. Sci. 148 (1995) 207-225. | MR | Zbl
,
[4] On existentially first-order definable languages and their relation to
[5] A uniform approach to define complexity classes. Theoret. Comput. Sci. 104 (1992) 263-283. | MR | Zbl
, and , and R Knast, The dot-depth hierarchy of star-free languages is infinite. J. Comput. Systems Sci. 16 (1978) 37-55. |[7] Lindström Quatifiers and Leaf Language Definability. Int. J. Found. Comput. Sci. 9 (1998) 277-294.
and ,[8] What's up with downward collapse: Using the easy-hard technique to link Boolean and polynomial hierarchy collapses. Compl. Theory Column 21, ACM-SIGACT Newslett. 29 (1998) 10-22.
, and ,[9] On the power of polynomial time bit-reductions, in Proc. 8th Structure in Complexity Theory (1993) 200-207. | MR
, , , and ,[10] On the power of number-theoretic operations with respect to counting, in Proc. 10th Structure in Complexity Theory (1995) 299-314.
, and ,[11] On balanced vs. unbalanced computation trees. Math. Systems Theory 29 (1996) 411-421. | MR | Zbl
, and ,[12] Logspace and logtime leaf languages. Inform. and Comput. 129 (1996) 21-33. | MR | Zbl
, and ,[13] Set Theory. North Holland (1967). | MR | Zbl
and ,[14] The difference and truth-table hierarchies for NP. Dep. of Informatics, Koblenz, Preprint 7 (1986).
, and ,[15] Counter-free automata. MIT Press, Cambridge, Massachusets (1971). | MR | Zbl
and ,[16] First order logic and star-free sets. J. Comput. Systems Sci. 32 (1986) 393-406. | MR | Zbl
and ,[17] Polynomial closure and unambiguous product. Theory Computing Systems 30 (1997) 383-422. | MR | Zbl
and ,[18] On Boolean lowness and Boolean highness, in Proc. 4-th Ann. Int. Computing and Combinatorics Conf. Springer, Berlin, Lecture Notes in Comput. Sci. 1449 (1998) 147-156. | MR | Zbl
and ,[19] Two refinements of the polynomial hierarchy, in Proc. of Symposium on Theor. Aspects of Computer Science STACS-94. Springer, Berlin, Lecture Notes in Comput. Sci. 775 (1994) 439-448. | MR | Zbl
,[20] Refining the polynomial hierarchy, Preprint No. 9. The University of Heidelberg, Chair of Mathematical Logic (1994) 20 p. | MR
,[21] Fine hierarchies and Boolean terms. J. Symb. Logic 60 (1995) 289-317. | MR | Zbl
,[22] Refining the polynomial hierarchy. Algebra and Logic 38 (1999) 456-475 (Russian, there is an English translation). | MR | Zbl
,[23] A logical approach to decidability of hierarchies of regular star-free languages, in Proc. of 18-th Int. Symposium on Theor. Aspects of Computer Science STACS-2001 in Dresden, Germany. Springer, Berlin, Lecture Notes in Comput. Sci. 2010 (2001) 539-550 | MR | Zbl
,[24] On hierarchies of regular star-free languages (in Russian). Preprint 69 of A.P. Ershov Institute of Informatics Systems (2000) 28 p.
and ,[25] Difference hierarchies of regular languages. Comput. Systems 161 (1998) 141-155 (in Russian). | MR | Zbl
,[26] The Boolean hierarchy over level 1/2 of the Straubing-Therien hierarchy, Technical Report 201. Inst. für Informatik, Univ. Würzburg available at http://www.informatik.uni-wuerzburg.de.
and ,[27] Classifying regular events in symbolic logic. J. Comput. Systems Sci. 25 (1982) 360-376. | MR | Zbl
,[28] Relativizable and non-relativizable theorems in the polynomial theory of algorithms. Izvestiya Rossiiskoi Akademii Nauk 57 (1993) 51-90 (in Russian). | MR | Zbl
,[29] On the Boolean closure of NP, in Proc. of the 1985 Int. Conf. on Fundamentals of Computation theory. Springer-Verlag, Lecture Notes in Comput. Sci. 199 (1985) 485-493. | MR | Zbl
and ,- Hierarchies and reducibilities on regular languages related to modulo counting, RAIRO - Theoretical Informatics and Applications, Volume 43 (2009) no. 1, p. 95 | DOI:10.1051/ita:2007063
- FINE HIERARCHY OF REGULAR APERIODIC ω-LANGUAGES, International Journal of Foundations of Computer Science, Volume 19 (2008) no. 03, p. 649 | DOI:10.1142/s0129054108005875
- Complexity of Aperiodicity for Topological Properties of Regular ω-Languages, Logic and Theory of Algorithms, Volume 5028 (2008), p. 533 | DOI:10.1007/978-3-540-69407-6_57
- Fine hierarchies and m-reducibilities in theoretical computer science, Theoretical Computer Science, Volume 405 (2008) no. 1-2, p. 116 | DOI:10.1016/j.tcs.2008.06.031
- Some Reducibilities on Regular Sets, New Computational Paradigms, Volume 3526 (2005), p. 430 | DOI:10.1007/11494645_53
- A reducibility for the dot-depth hierarchy, Theoretical Computer Science, Volume 345 (2005) no. 2-3, p. 448 | DOI:10.1016/j.tcs.2005.07.020
- The Dot-Depth and the Polynomial Hierarchy Correspond on the Delta Levels, Developments in Language Theory, Volume 3340 (2004), p. 89 | DOI:10.1007/978-3-540-30550-7_8
- A Reducibility for the Dot-Depth Hierarchy, Mathematical Foundations of Computer Science 2004, Volume 3153 (2004), p. 783 | DOI:10.1007/978-3-540-28629-5_61
Cité par 8 documents. Sources : Crossref