Catégorification de structures définies par monade cartésienne
Cahiers de Topologie et Géométrie Différentielle Catégoriques, Tome 46 (2005) no. 1, pp. 2-52.
@article{CTGDC_2005__46_1_2_0,
     author = {Bourn, D. and Penon, J.},
     title = {Cat\'egorification de structures d\'efinies par monade cart\'esienne},
     journal = {Cahiers de Topologie et G\'eom\'etrie Diff\'erentielle Cat\'egoriques},
     pages = {2--52},
     publisher = {Dunod \'editeur, publi\'e avec le concours du CNRS},
     volume = {46},
     number = {1},
     year = {2005},
     mrnumber = {2131960},
     zbl = {1083.18002},
     language = {fr},
     url = {http://www.numdam.org/item/CTGDC_2005__46_1_2_0/}
}
TY  - JOUR
AU  - Bourn, D.
AU  - Penon, J.
TI  - Catégorification de structures définies par monade cartésienne
JO  - Cahiers de Topologie et Géométrie Différentielle Catégoriques
PY  - 2005
SP  - 2
EP  - 52
VL  - 46
IS  - 1
PB  - Dunod éditeur, publié avec le concours du CNRS
UR  - http://www.numdam.org/item/CTGDC_2005__46_1_2_0/
LA  - fr
ID  - CTGDC_2005__46_1_2_0
ER  - 
%0 Journal Article
%A Bourn, D.
%A Penon, J.
%T Catégorification de structures définies par monade cartésienne
%J Cahiers de Topologie et Géométrie Différentielle Catégoriques
%D 2005
%P 2-52
%V 46
%N 1
%I Dunod éditeur, publié avec le concours du CNRS
%U http://www.numdam.org/item/CTGDC_2005__46_1_2_0/
%G fr
%F CTGDC_2005__46_1_2_0
Bourn, D.; Penon, J. Catégorification de structures définies par monade cartésienne. Cahiers de Topologie et Géométrie Différentielle Catégoriques, Tome 46 (2005) no. 1, pp. 2-52. http://www.numdam.org/item/CTGDC_2005__46_1_2_0/

[1] J. Baez and J. Dolan, Categorification, Contemp. Math. AMS, 230, 1998, 1-36. | MR | Zbl

[2] M.A. Batanin, Monoidal globular categories as a natural environment for the theory of weak n-categories, Adv Math., 136, 1998, 39-103. | MR | Zbl

[3] M.A. Batanin, On the Penon method of weakening of algebraic structures, J. Pure Appl. Algebra, 172, 2002, 1-23. | MR | Zbl

[4] D. Boum, The structural nature of the nerve functor for n-groupoids, Appl. Categorical Structures, 8, 2000, 81-113. | MR | Zbl

[5] D. Boum, n-groupoids from n-truncated simplicial objects as a solution to a universal problem, J. Pure Appl. Algebra, 154, 2000, 71-102. | MR | Zbl

[6] A. Burroni, T-categories, Cahiers de Topologie et Géom. Diff.,12, 1971, 215-321. | EuDML | Numdam | MR | Zbl

[7] A. Burroni, Algebres graphiques (sur un concept de dimension dans les langages formels), Cahiers de Topologie et Géom. Diff., 22, 1981, 249-265. | EuDML | Numdam | MR | Zbl

[8] L. Crane Clock and category: is quantum gravity algebraic ?, Jour. Math. Phys., 36, 1995, 6180-6193. | MR | Zbl

[9] L. Crane And I. Frenkel, Four dimensional topological quantum field theory, Hopf categories and the canonical bases, Jour. Math. Phys., 35, 1994, 5136-5154. | MR | Zbl

[10] T. Leinster, General operads and multicategories, e-print math CT/9810053, 1997.

[11] T. Leinster, Structures in higher dimensional category theory, preprint University of Cambridge, 1998, pp 80.

[12] T. Leinster, A survey of definitions of n-categories, e-print math CT/0107188, 1, 2001.

[13] J. Penon, Approche polygraphique des ∞-catégories non strictes, Cahiers de Topologie et Géom. Diff. ctégoriques, 40, 1999, 31-80. | Numdam | Zbl