We introduce the concept of mean-field optimal control which is the rigorous limit process connecting finite dimensional optimal control problems with ODE constraints modeling multi-agent interactions to an infinite dimensional optimal control problem with a constraint given by a PDE of Vlasov-type, governing the dynamics of the probability distribution of interacting agents. While in the classical mean-field theory one studies the behavior of a large number of small individuals freely interacting with each other, by simplifying the effect of all the other individuals on any given individual by a single averaged effect, we address the situation where the individuals are actually influenced also by an external policy maker, and we propagate its effect for the number N of individuals going to infinity. On the one hand, from a modeling point of view, we take into account also that the policy maker is constrained to act according to optimal strategies promoting its most parsimonious interaction with the group of individuals. This will be realized by considering cost functionals including L1-norm terms penalizing a broadly distributed control of the group, while promoting its sparsity. On the other hand, from the analysis point of view, and for the sake of generality, we consider broader classes of convex control penalizations. In order to develop this new concept of limit rigorously, we need to carefully combine the classical concept of mean-field limit, connecting the finite dimensional system of ODE describing the dynamics of each individual of the group to the PDE describing the dynamics of the respective probability distribution, with the well-known concept of Γ-convergence to show that optimal strategies for the finite dimensional problems converge to optimal strategies of the infinite dimensional problem.
Mots-clés : Sparse optimal control, mean-field limit, Γ-limit, optimal control with ODE constraints, optimal control with PDE constraints
@article{COCV_2014__20_4_1123_0, author = {Fornasier, Massimo and Solombrino, Francesco}, title = {Mean-Field {Optimal} {Control}}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {1123--1152}, publisher = {EDP-Sciences}, volume = {20}, number = {4}, year = {2014}, doi = {10.1051/cocv/2014009}, mrnumber = {3264236}, language = {en}, url = {https://www.numdam.org/articles/10.1051/cocv/2014009/} }
TY - JOUR AU - Fornasier, Massimo AU - Solombrino, Francesco TI - Mean-Field Optimal Control JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2014 SP - 1123 EP - 1152 VL - 20 IS - 4 PB - EDP-Sciences UR - https://www.numdam.org/articles/10.1051/cocv/2014009/ DO - 10.1051/cocv/2014009 LA - en ID - COCV_2014__20_4_1123_0 ER -
%0 Journal Article %A Fornasier, Massimo %A Solombrino, Francesco %T Mean-Field Optimal Control %J ESAIM: Control, Optimisation and Calculus of Variations %D 2014 %P 1123-1152 %V 20 %N 4 %I EDP-Sciences %U https://www.numdam.org/articles/10.1051/cocv/2014009/ %R 10.1051/cocv/2014009 %G en %F COCV_2014__20_4_1123_0
Fornasier, Massimo; Solombrino, Francesco. Mean-Field Optimal Control. ESAIM: Control, Optimisation and Calculus of Variations, Tome 20 (2014) no. 4, pp. 1123-1152. doi : 10.1051/cocv/2014009. https://www.numdam.org/articles/10.1051/cocv/2014009/
[1] Controlled McKean-Vlasov equations. Commun. Appl. Anal. 5 (2001) 183-206. | MR | Zbl
and ,[2] Functions of Bounded Variation and Free Discontinuity Problems. Oxford, Clarendon Press (2000). | MR | Zbl
, and ,[3] Gradient Flows in Metric Spaces and in the Space of Probability Measures. Lect. Math. ETH Zürich 2nd, edition. Birkhäuser Verlag, Basel (2008). | MR | Zbl
, and ,[4] A maximum principle for SDEs of mean-field type. Appl. Math. Opt. 63 (2011) 341-356. | MR | Zbl
and ,[5] Interaction ruling animal collective behavior depends on topological rather than metric distance: evidence from a field study. Proc. National Academy of Sci. 105 (2008) 1232-1237.
, , , , , , , , , , and ,[6] Mean field games and mean field type control theory. Springer, New York (2013). | MR | Zbl
, and ,[7] Introduction to the Mathematical Theory of Control, vol. 2 of AIMS Ser. Appl. Math.. American Institute of Mathematical Sciences (AIMS), Springfield, MO (2007). | MR | Zbl
and ,[8] A general stochastic maximum principle for sdes of mean-field type. Appl. Math. Opt. 64 (2011) 197-216. | MR | Zbl
, and ,[9] Self-Organization in Biological Systems. Princeton University Press (2003). | MR | Zbl
, , , , and ,[10] A well-posedness theory in measures for some kinetic models of collective motion. Math. Model. Meth. Appl. Sci. 21 (2011) 515-539. | Zbl
, and ,[11] Sparse stabilization and control of the Cucker−Smale model. Preprint: arXiv:1210.5739 (2012).
, , and ,[12] The derivation of swarming models: mean-field limit and Wasserstein distances. Preprint: arXiv:1304.5776 (2013).
, and ,[13] Double milling in self-propelled swarms from kinetic theory. Kinet. Relat. Models 2 (2009) 363-378. | MR | Zbl
, and ,[14] Particle, kinetic, and hydrodynamic models of swarming, in Math. Modeling of Collective Behavior in Socio-Economic and Life Sci., edited by G. Naldi, L. Pareschi, G. Toscani and N. Bellomo. Model. Simul. Sci. Engrg. Technol. Birkhäuser, Boston (2010) 297-336. | MR | Zbl
, , and ,[15] Approximation of elliptic control problems in measure spaces with sparse solutions. SIAM J. Control Optim. 50 (2012) 1735-1752. | MR
, and ,[16] State transition and the continuum limit for the 2D interacting, self-propelled particle system. Physica D 232 (2007) 33-47. | MR
, , , and ,[17] Multi-vehicle flocking: scalability of cooperative control algorithms using pairwise potentials. IEEE Int. Conference on Robotics and Automation (2007) 2292-2299.
, , and ,[18] A duality-based approach to elliptic control problems in non-reflexive Banach spaces. ESAIM: COCV 17 (2011) 243-266. | Numdam | MR | Zbl
and ,[19] A measure space approach to optimal source placement. Comput. Optim. Appl. 53 (2012) 155-171. | MR | Zbl
and ,[20] Self-organized lane formation and optimized traffic flow in army ants. Proc. R. Soc. London B 270 (2002) 139-146.
and ,[21] Effective leadership and decision making in animal groups on the move. Nature 433 (2005) 513-516.
, , and ,[22] Investigation of optimal control with a minimum-fuel consumption criterion for a fourth-order plant with two control inputs; synthesis of an efficient suboptimal control. J. Basic Engrg. 87 (1965) 39-58.
and ,[23] Modeling self-organization in pedestrians and animal groups from macroscopic and microscopic viewpoints, in Mathematical Modeling of Collective Behavior in Socio-Economic and Life Sciences, edited by G. Naldi, L. Pareschi, G. Toscani and N. Bellomo. Model. Simul. Sci. Engrg. Technol. Birkhäuser, Boston (2010). | MR | Zbl
, and ,[24] Multiscale modeling of granular flows with application to crowd dynamics. Multiscale Model. Simul. 9 (2011) 155-182. | MR | Zbl
, and ,[25] A general collision-avoiding flocking framework. IEEE Trans. Automat. Control 56 (2011) 1124-1129. | MR
and ,[26] Flocking in noisy environments. J. Math. Pures Appl. 89 (2008) 278-296. | MR | Zbl
and ,[27] Emergent behavior in flocks. IEEE Trans. Automat. Control 52 (2007) 852-862,. | MR
and ,[28] On the mathematics of emergence. Japan J. Math. 2 (2007) 197-227. | MR | Zbl
and ,[29] Modeling language evolution. Found. Comput. Math. 4 (2004) 315-343. | MR | Zbl
, and ,[30] An Introduction to Γ-Convergence. Progress in Nonlinear Differ. Eqs. Appl., vol. 8. Birkhäuser Boston Inc., Boston, MA (1993). | MR | Zbl
,[31] Geometric Measure Theory. Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen, vol. 153. Springer-Verlag, Berlin, Heidelberg, New York (1969). | MR | Zbl
,[32] Differential equations with Discontinuous Righthand Sides. Vol. 18 of Math. Appl. (Soviet Series). Translated from the Russian. Kluwer Academic Publishers Group, Dordrecht (1988). | MR | Zbl
,[33] Numerical Methods for Nonlinear Variational Problems. Scientific Comput. Springer-Verlag, Berlin (2008). Reprint of the 1984 original. | MR | Zbl
,[34] Onset of collective and cohesive motion. Phys. Rev. Lett. 92 (2004).
and ,[35] Directional sparsity in optimal control of partial differential equations. SIAM J. Control Optim. 50 (2012) 943-963. | MR | Zbl
, and ,[36] Individual and mass behaviour in large population stochastic wireless power control problems: centralized and Nash equilibrium solutions. Proc. of the 42nd IEEE Conference on Decision and Control Maui, Hawaii USA (2003) 98-103.
, and ,[37] Correction to: “Coordination of groups of mobile autonomous agents using nearest neighbor rules” [48 (2003) 988-1001; MR 1986266]. IEEE Trans. Automat. Control 48 (2003) 1675. | MR
, and ,[38] Self-organization and selection in the emergence of vocabulary. Complexity 7 (2002) 41-54. | MR
, , and ,[39] Initiation of slime mold aggregation viewed as an instability. J. Theoret. Biol. 26 (1970) 399-415. | Zbl
and ,[40] The social lifestyle of myxobacteria. Bioessays 20 (1998) 1030-1038.
and ,[41] Mean field games. Japan J. Math. 2 (2007) 229-260. | MR | Zbl
and ,[42] Virtual leaders, artificial potentials and coordinated control of groups. Proc. of 40th IEEE Conf. Decision Contr. (2001) 2968-2973.
and ,[43] Self-organizing dynamic model of fish schooling. J. Theoret. Biol. 171 (1994) 123-136.
,[44] Synthesis of Cucker−Smale type flocking via mean field stochastic control theory: Nash equilibria. Proc. of 48th Allerton Conf. Comm., Cont. Comp., Monticello, Illinois (2010) 814-815.
, and ,[45] Mean field analysis of controlled Cucker−Smale type flocking: Linear analysis and perturbation equations. Proc. of 18th IFAC World Congress Milano, Italy (2011) 4471-4476.
, and ,[46] Complexity, pattern and evolutionary trade-offs in animal aggregation. Science 294 (1999) 99-101.
and ,[47] Self-organized fish schools: An examination of emergent properties. Biol. Bull. 202 (2002) 296-305.
, and ,[48] Extension of the Cucker-Smale control law to space flight formations. AIAA J. Guidance, Control, and Dynamics 32 2009 527-537.
, and ,[49] Mathematical tools for kinetic equations. Bull. Am. Math. Soc., New Ser. 41 (2004) 205-244. | MR | Zbl
,[50] Transport Equations in Biology. Basel, Birkhäuser (2007). | MR | Zbl
,[51] A priori error analysis for discretization of sparse elliptic optimal control problems in measure space. SIAM J. Control Optim. 51 (2013) 2788-2808. | MR
and ,[52] Complexity and regularity of maximal energy domains for the wave equation with fixed initial data. Discrete Contin. Dyn. Syst. Ser. A.
, and ,[53] Adaptive finite element discretization in PDE-based optimization. GAMM-Mitt. 33 (2010) 177-193. | MR | Zbl
and ,[54] Individual differences make a difference in the trajectories of simulated schools of fish. Ecol. Model. 92 (1996) 65-77.
,[55] A statistical model of criminal behavior. Math. Models Methods Appl. Sci. 18 (2008) 1249-1267. | MR | Zbl
, , , , , and ,[56] Elliptic optimal control problems with L1-control cost and applications for the placement of control devices. Comput. Optim. Appl. 44 (2009) 159-181. | MR | Zbl
,[57] Cooperative acceleration of task performance: Foraging behavior of interacting multi-robots system. Phys. D 100 (1997) 343-354. | Zbl
and ,[58] Long-range order in a two-dimensional dynamical xy model: How birds fly together. Phys. Rev. Lett. 75 (1995) 4326-4329.
and ,[59] Novel type of phase transition in a system of self-driven particles. Phys. Rev. Lett. 75 (1995) 1226-1229.
, , , and ,[60] Collective motion. Phys. Rep. 517 (2012) 71-140.
and ,[61] Optimal Transport, vol. 338. Grundlehren der Math. Wissenschaften, [Fundamental Principles of Mathematical Science]. Springer-Verlag, Berlin (2009). Old and new. | MR | Zbl
,[62] L1 minimization in optimal control and applications to robotics. Optim. Control Appl. Methods 27 (2006) 301-321. | MR
and ,[63] Convergence and regularization results for optimal control problems with sparsity functional. ESAIM: COCV 17 (2011) 858-886. | Numdam | MR | Zbl
and ,[64] Inherent noise can facilitate coherence in collective swarm motion. Proc. Natl. Acad. Sci. 106 (2009) 5464-5469.
, , , , , , and ,- Exponential turnpike property for particle systems and mean-field limit, European Journal of Applied Mathematics (2025), p. 1 | DOI:10.1017/s0956792524000871
- Instantaneous control strategies for magnetically confined fusion plasma, Journal of Computational Physics, Volume 527 (2025), p. 113804 | DOI:10.1016/j.jcp.2025.113804
- Pontryagin maximum principle for the deterministic mean field type optimal control problem via the Lagrangian approach, Journal of Differential Equations, Volume 430 (2025), p. 113205 | DOI:10.1016/j.jde.2025.02.076
- The mean field control problem for the two-dimensional Keller-Segel system, SCIENTIA SINICA Mathematica, Volume 55 (2025) no. 3, p. 703 | DOI:10.1360/ssm-2024-0010
- Interpolation, approximation, and controllability of deep neural networks, SIAM Journal on Control and Optimization, Volume 63 (2025) no. 1, pp. 625-649 | DOI:10.1137/23m1599744 | Zbl:7986013
- , 2024 IEEE 63rd Conference on Decision and Control (CDC) (2024), p. 2597 | DOI:10.1109/cdc56724.2024.10886762
- Mean field games of controls with Dirichlet boundary conditions, European Series in Applied and Industrial Mathematics (ESAIM): Control, Optimization and Calculus of Variations, Volume 30 (2024), p. 38 (Id/No 32) | DOI:10.1051/cocv/2024020 | Zbl:1540.35408
- Gradient-based parameter calibration of an anisotropic interaction model for pedestrian dynamics, European Journal of Applied Mathematics, Volume 35 (2024) no. 2, pp. 203-224 | DOI:10.1017/s0956792523000153 | Zbl:1547.76012
- The turnpike property for mean-field optimal control problems, European Journal of Applied Mathematics, Volume 35 (2024) no. 6, p. 733 | DOI:10.1017/s0956792524000044
- Controlled opinion formation in multiagent systems with constraints on control set, Frontiers of dynamic games. Proceedings of the 2nd international conference “Game theory and applications” 2022, Saint Petersburg, September 2022, Cham: Birkhäuser, 2024, pp. 27-42 | DOI:10.1007/978-3-031-66379-6_3 | Zbl:7980605
- Density Stabilization Strategies for Nonholonomic Agents on Compact Manifolds, IEEE Transactions on Automatic Control, Volume 69 (2024) no. 3, p. 1448 | DOI:10.1109/tac.2023.3326060
- Set-driven evolution for multiagent system, Journal of Optimization Theory and Applications, Volume 200 (2024) no. 1, pp. 280-307 | DOI:10.1007/s10957-023-02344-8 | Zbl:1531.93023
- Carathéodory theory and a priori estimates for continuity inclusions in the space of probability measures, Nonlinear Analysis. Theory, Methods Applications. Series A: Theory and Methods, Volume 247 (2024), p. 32 (Id/No 113595) | DOI:10.1016/j.na.2024.113595 | Zbl:7912334
- Trajectory stabilization of nonlocal continuity equations by localized controls, SIAM Journal on Control and Optimization, Volume 62 (2024) no. 6, pp. 3315-3340 | DOI:10.1137/24m1644274 | Zbl:7962971
- On the viability and invariance of proper sets under continuity inclusions in Wasserstein spaces, SIAM Journal on Mathematical Analysis, Volume 56 (2024) no. 3, pp. 2863-2914 | DOI:10.1137/23m1560410 | Zbl:7849802
- , 2023 62nd IEEE Conference on Decision and Control (CDC) (2023), p. 1367 | DOI:10.1109/cdc49753.2023.10384000
- Mean-field optimal control in a multi-agent interaction model for prevention of maritime crime, Advances in Continuous and Discrete Models, Volume 2023 (2023) no. 1 | DOI:10.1186/s13662-023-03771-7
- Crowd Dynamics: Modeling and Control of Multiagent Systems, Annual Review of Control, Robotics, and Autonomous Systems, Volume 6 (2023) no. 1, p. 261 | DOI:10.1146/annurev-control-060822-123629
- Optimal control of Hughes' model for pedestrian flow via local attraction, Applied Mathematics and Optimization, Volume 88 (2023) no. 3, p. 44 (Id/No 87) | DOI:10.1007/s00245-023-10064-8 | Zbl:1540.35420
- Mean field approximation of an optimal control problem for the continuity equation arising in smart charging, Applied Mathematics and Optimization, Volume 88 (2023) no. 3, p. 44 (Id/No 79) | DOI:10.1007/s00245-023-10054-w | Zbl:1526.49019
- Optimal control of nonlocal continuity equations: numerical solution, Applied Mathematics and Optimization, Volume 88 (2023) no. 3, p. 37 (Id/No 86) | DOI:10.1007/s00245-023-10062-w | Zbl:1525.49021
- Vanishing viscosity in mean-field optimal control, European Series in Applied and Industrial Mathematics (ESAIM): Control, Optimization and Calculus of Variations, Volume 29 (2023), p. 38 (Id/No 29) | DOI:10.1051/cocv/2023024 | Zbl:1512.49025
- Mean-field limit of a hybrid system for multi-lane multi-class traffic, European Series in Applied and Industrial Mathematics (ESAIM): Control, Optimization and Calculus of Variations, Volume 29 (2023), p. 24 (Id/No 71) | DOI:10.1051/cocv/2023039 | Zbl:1520.90077
- Optimal control problems of nonlocal interaction equations, European Series in Applied and Industrial Mathematics (ESAIM): Control, Optimization and Calculus of Variations, Volume 29 (2023), p. 28 (Id/No 40) | DOI:10.1051/cocv/2023029 | Zbl:1521.49003
- Learning Swarm Interaction Dynamics From Density Evolution, IEEE Transactions on Control of Network Systems, Volume 10 (2023) no. 1, p. 214 | DOI:10.1109/tcns.2022.3198784
- Dynamical optimal transport of nonlinear control-affine systems, Journal of Computational Dynamics, Volume 10 (2023) no. 4, pp. 425-449 | DOI:10.3934/jcd.2023006 | Zbl:1526.49027
- A measure theoretical approach to the mean-field maximum principle for training NeurODEs, Nonlinear Analysis. Theory, Methods Applications. Series A: Theory and Methods, Volume 227 (2023), p. 55 (Id/No 113161) | DOI:10.1016/j.na.2022.113161 | Zbl:1503.49005
- Control methods in hyperbolic PDEs. Abstracts from the workshop held November 5–10, 2023, Oberwolfach Rep. 20, No. 4, 2941-3011, 2023 | DOI:10.4171/owr/2023/52 | Zbl:1546.00045
- Control of multi-agent systems: results, open problems, and applications, Open Mathematics, Volume 21 (2023), p. 26 (Id/No 20220585) | DOI:10.1515/math-2022-0585 | Zbl:1520.93022
- On evolving network models and their influence on opinion formation, Physica D, Volume 456 (2023), p. 19 (Id/No 133914) | DOI:10.1016/j.physd.2023.133914 | Zbl:1530.91491
- Exact controllability of the vortex system by means of a single vortex, SIAM Journal on Control and Optimization, Volume 61 (2023) no. 6, pp. 3316-3340 | DOI:10.1137/22m1509710 | Zbl:1530.93027
- Mean-field sparse optimal control of systems with additive white noise, SIAM Journal on Mathematical Analysis, Volume 55 (2023) no. 6, pp. 6965-6990 | DOI:10.1137/22m148906x | Zbl:7764527
- Mean-field selective optimal control via transient leadership, Applied Mathematics and Optimization, Volume 85 (2022) no. 2, p. 44 (Id/No 22) | DOI:10.1007/s00245-022-09837-4 | Zbl:1486.49052
- Pseudospectral methods and iterative solvers for optimization problems from multiscale particle dynamics, BIT, Volume 62 (2022) no. 4, pp. 1703-1743 | DOI:10.1007/s10543-022-00928-w | Zbl:1502.35169
- Solutions to Hamilton-Jacobi equation on a Wasserstein space, Calculus of Variations and Partial Differential Equations, Volume 61 (2022) no. 1, p. 41 (Id/No 9) | DOI:10.1007/s00526-021-02113-3 | Zbl:1479.49009
- Linear-Quadratic Problems of Optimal Control in the Space of Probabilities, IEEE Control Systems Letters, Volume 6 (2022), p. 3271 | DOI:10.1109/lcsys.2022.3184257
- Probabilistic Message-Passing Control, IEEE Transactions on Systems, Man, and Cybernetics: Systems, Volume 52 (2022) no. 7, p. 4470 | DOI:10.1109/tsmc.2021.3096133
- Semiconcavity and sensitivity analysis in mean-field optimal control and applications, Journal de Mathématiques Pures et Appliquées. Neuvième Série, Volume 157 (2022), pp. 282-345 | DOI:10.1016/j.matpur.2021.11.001 | Zbl:1483.30106
- Lagrangian, Eulerian and Kantorovich formulations of multi-agent optimal control problems: equivalence and gamma-convergence, Journal of Differential Equations, Volume 322 (2022), pp. 268-364 | DOI:10.1016/j.jde.2022.03.019 | Zbl:1492.49038
- Multiscale control of Stackelberg games, Mathematics and Computers in Simulation, Volume 200 (2022), pp. 468-488 | DOI:10.1016/j.matcom.2022.04.028 | Zbl:1540.91011
- An Euler-Poincaré Approach to Mean-Field Optimal Control, Proceedings of 2021 International Conference on Autonomous Unmanned Systems (ICAUS 2021), Volume 861 (2022), p. 2066 | DOI:10.1007/978-981-16-9492-9_204
- Moment-driven predictive control of mean-field collective dynamics, SIAM Journal on Control and Optimization, Volume 60 (2022) no. 2, pp. 814-841 | DOI:10.1137/21m1391559 | Zbl:1545.93129
- , 2021 American Control Conference (ACC) (2021), p. 1485 | DOI:10.23919/acc50511.2021.9482648
- Necessary optimality conditions for optimal control problems in Wasserstein spaces, Applied Mathematics and Optimization, Volume 84 (2021), pp. 1281-1330 | DOI:10.1007/s00245-021-09772-w | Zbl:1486.30151
- Linear quadratic mean field social optimization: Asymptotic solvability and decentralized control, Applied Mathematics and Optimization, Volume 84 (2021), pp. 1969-2010 | DOI:10.1007/s00245-021-09817-0 | Zbl:1486.49045
- Optimized leaders strategies for crowd evacuation in unknown environments with multiple exits, Crowd dynamics. Volume 3. Modeling and social applications in the time of COVID-19, Cham: Birkhäuser, 2021, pp. 97-131 | DOI:10.1007/978-3-030-91646-6_5 | Zbl:1513.76032
- Mean-field optimal control for biological pattern formation, European Series in Applied and Industrial Mathematics (ESAIM): Control, Optimization and Calculus of Variations, Volume 27 (2021), p. 24 (Id/No 40) | DOI:10.1051/cocv/2021034 | Zbl:1467.49014
- Mean-Field of Optimal Control Problems for Hybrid Model of Multilane Traffic, IEEE Control Systems Letters, Volume 5 (2021) no. 6, p. 1964 | DOI:10.1109/lcsys.2020.3046540
- Variance Optimization and Control Regularity for Mean-Field Dynamics, IFAC-PapersOnLine, Volume 54 (2021) no. 19, p. 13 | DOI:10.1016/j.ifacol.2021.11.048
- Adjoint DSMC for nonlinear Boltzmann equation constrained optimization, Journal of Computational Physics, Volume 439 (2021), p. 29 (Id/No 110404) | DOI:10.1016/j.jcp.2021.110404 | Zbl:1537.76146
- Differential inclusions in Wasserstein spaces: the Cauchy-Lipschitz framework, Journal of Differential Equations, Volume 271 (2021), pp. 594-637 | DOI:10.1016/j.jde.2020.08.031 | Zbl:1454.49018
- Optimal feedback law recovery by gradient-augmented sparse polynomial regression, Journal of Machine Learning Research (JMLR), Volume 22 (2021), p. 32 (Id/No 48) | Zbl:1539.65072
- One-dimensional multi-agent optimal control with aggregation and distance constraints: qualitative properties and mean-field limit, Nonlinearity, Volume 34 (2021) no. 3, pp. 1408-1447 | DOI:10.1088/1361-6544/abc795 | Zbl:1467.82048
- Mean-field optimal control and optimality conditions in the space of probability measures, SIAM Journal on Control and Optimization, Volume 59 (2021) no. 2, pp. 977-1006 | DOI:10.1137/19m1249461 | Zbl:1460.49019
- Intrinsic Lipschitz regularity of mean-field optimal controls, SIAM Journal on Control and Optimization, Volume 59 (2021) no. 3, pp. 2011-2046 | DOI:10.1137/20m1321474 | Zbl:1466.35068
- , 2020 59th IEEE Conference on Decision and Control (CDC) (2020), p. 470 | DOI:10.1109/cdc42340.2020.9303835
- Probabilistic message passing control and FPD based decentralised control for stochastic complex systems, AIMS Electronics and Electrical Engineering, Volume 4 (2020) no. 2, p. 216 | DOI:10.3934/electreng.2020.2.216
- Optimal control of multiagent systems in the Wasserstein space, Calculus of Variations and Partial Differential Equations, Volume 59 (2020) no. 2, p. 45 (Id/No 58) | DOI:10.1007/s00526-020-1718-6 | Zbl:1436.49003
- Robust Hybrid Artificial Fish Swarm Simulated Annealing Optimization Algorithm for Secured Free Scale Networks against Malicious Attacks, Computers, Materials Continua, Volume 66 (2020) no. 1, p. 903 | DOI:10.32604/cmc.2020.012255
- Recent developments in controlled crowd dynamics, Crowd Dynamics, Volume 2. Theory, models, and applications, Cham: Birkhäuser, 2020, pp. 133-157 | DOI:10.1007/978-3-030-50450-2_7 | Zbl:1490.93056
- Mathematical Models and Methods for Crowd Dynamics Control, Crowd Dynamics, Volume 2 (2020), p. 159 | DOI:10.1007/978-3-030-50450-2_8
- Instantaneous control of interacting particle systems in the mean-field limit, Journal of Computational Physics, Volume 405 (2020), p. 20 (Id/No 109181) | DOI:10.1016/j.jcp.2019.109181 | Zbl:1454.82025
- Minimal time for the continuity equation controlled by a localized perturbation of the velocity vector field, Journal of Differential Equations, Volume 269 (2020) no. 1, pp. 82-124 | DOI:10.1016/j.jde.2019.11.098 | Zbl:1436.93021
- On a mean field optimal control problem, Nonlinear Analysis. Theory, Methods Applications. Series A: Theory and Methods, Volume 199 (2020), p. 13 (Id/No 112039) | DOI:10.1016/j.na.2020.112039 | Zbl:1448.35526
- Control strategies for the dynamics of large particle systems, Active particles, Volume 2. Advances in theory, models, and applications, Cham: Birkhäuser, 2019, pp. 149-171 | DOI:10.1007/978-3-030-20297-2_5 | Zbl:1453.93007
- The Pontryagin Maximum Principle in the Wasserstein space, Calculus of Variations and Partial Differential Equations, Volume 58 (2019) no. 1, p. 36 (Id/No 11) | DOI:10.1007/s00526-018-1447-2 | Zbl:1404.49016
- A Pontryagin maximum principle in Wasserstein spaces for constrained optimal control problems, European Series in Applied and Industrial Mathematics (ESAIM): Control, Optimization and Calculus of Variations, Volume 25 (2019), p. 38 (Id/No 52) | DOI:10.1051/cocv/2019044 | Zbl:1442.49025
- Mean-field optimal control as gamma-limit of finite agent controls, European Journal of Applied Mathematics, Volume 30 (2019) no. 6, pp. 1153-1186 | DOI:10.1017/s0956792519000044 | Zbl:1427.35302
- Vehicular traffic, crowds, and swarms: from kinetic theory and multiscale methods to applications and research perspectives, M
AS. Mathematical Models Methods in Applied Sciences, Volume 29 (2019) no. 10, pp. 1901-2005 | DOI:10.1142/s0218202519500374 | Zbl:1431.35211 - Leader formation with mean-field birth and death models, M
AS. Mathematical Models Methods in Applied Sciences, Volume 29 (2019) no. 4, pp. 633-679 | DOI:10.1142/s0218202519400025 | Zbl:1430.35238 - Impulsive Relaxation of Continuity Equations and Modeling of Colliding Ensembles, Optimization and Applications, Volume 974 (2019), p. 367 | DOI:10.1007/978-3-030-10934-9_26
- Optimization Problems for Interacting Particle Systems and Corresponding Mean‐field Limits, PAMM, Volume 19 (2019) no. 1 | DOI:10.1002/pamm.201900148
- A mean-field optimal control formulation of deep learning, Research in the Mathematical Sciences, Volume 6 (2019) no. 1, p. 41 (Id/No 10) | DOI:10.1007/s40687-018-0172-y | Zbl:1421.49021
- Approximate and exact controllability of the continuity equation with a localized vector field, SIAM Journal on Control and Optimization, Volume 57 (2019) no. 2, pp. 1284-1311 | DOI:10.1137/17m1152917 | Zbl:1411.93028
- Sparse Control of Hegselmann–Krause Models: Black Hole and Declustering, SIAM Journal on Control and Optimization, Volume 57 (2019) no. 4, p. 2628 | DOI:10.1137/18m1168911
- Sparse control of Hegselmann-Krause models: black hole and declustering, SIAM Journal on Control and Optimization, Volume 57 (2019) no. 4, pp. 2628-2659 | DOI:10.1137/18m1168911; | Zbl:1422.91620
- , 2018 IEEE Conference on Decision and Control (CDC) (2018), p. 1225 | DOI:10.1109/cdc.2018.8619808
- Selective model-predictive control for flocking systems, Communications in Applied and Industrial Mathematics, Volume 9 (2018) no. 2, pp. 4-21 | DOI:10.2478/caim-2018-0009 | Zbl:1423.93113
- Learning and sparse control of multiagent systems, European congress of mathematics. Proceedings of the 7th ECM (7ECM) congress, Berlin, Germany, July 18–22, 2016, Zürich: European Mathematical Society (EMS), 2018, pp. 551-581 | DOI:10.4171/176-1/26 | Zbl:1401.93014
- Performance Bounds on Spatial Coverage Tasks by Stochastic Robotic Swarms, IEEE Transactions on Automatic Control, Volume 63 (2018) no. 6, p. 1563 | DOI:10.1109/tac.2017.2747769
- Optimal consensus control of the Cucker-Smale model, IFAC-PapersOnLine, Volume 51 (2018) no. 13, p. 1 | DOI:10.1016/j.ifacol.2018.07.245
- Impulsive control of systems with network structure describing spread of political influence, Izvestiya Irkutskogo Gosudarstvennogo Universiteta. Seriya Matematika, Volume 25 (2018), pp. 126-143 | DOI:10.26516/1997-7670.2018.25.126 | Zbl:1409.49035
- Pressureless Euler alignment system with control, M
AS. Mathematical Models Methods in Applied Sciences, Volume 28 (2018) no. 9, pp. 1635-1664 | DOI:10.1142/s0218202518400018 | Zbl:1411.82025 - MFGs with a Common Noise: Strong and Weak Solutions, Probabilistic Theory of Mean Field Games with Applications II, Volume 84 (2018), p. 107 | DOI:10.1007/978-3-319-56436-4_2
- Solving MFGs with a Common Noise, Probabilistic Theory of Mean Field Games with Applications II, Volume 84 (2018), p. 155 | DOI:10.1007/978-3-319-56436-4_3
- The Master Field and the Master Equation, Probabilistic Theory of Mean Field Games with Applications II, Volume 84 (2018), p. 239 | DOI:10.1007/978-3-319-56436-4_4
- Optimization in a Random Environment, Probabilistic Theory of Mean Field Games with Applications II, Volume 84 (2018), p. 3 | DOI:10.1007/978-3-319-56436-4_1
- Classical Solutions to the Master Equation, Probabilistic Theory of Mean Field Games with Applications II, Volume 84 (2018), p. 323 | DOI:10.1007/978-3-319-56436-4_5
- Convergence and Approximations, Probabilistic Theory of Mean Field Games with Applications II, Volume 84 (2018), p. 447 | DOI:10.1007/978-3-319-56436-4_6
- Extensions for Volume II, Probabilistic Theory of Mean Field Games with Applications II, Volume 84 (2018), p. 541 | DOI:10.1007/978-3-319-56436-4_7
- On “discontinuous” continuity equation and impulsive ensemble control, Systems Control Letters, Volume 118 (2018), pp. 77-83 | DOI:10.1016/j.sysconle.2018.06.001 | Zbl:1402.93138
- Mean-Field-Type Games in Engineering, AIMS Electronics and Electrical Engineering, Volume 1 (2017) no. 1, p. 18 | DOI:10.3934/electreng.2017.1.18
- Recent Advances in Opinion Modeling: Control and Social Influence, Active Particles, Volume 1 (2017), p. 49 | DOI:10.1007/978-3-319-49996-3_2
- Interaction Network, State Space, and Control in Social Dynamics, Active Particles, Volume 1 (2017), p. 99 | DOI:10.1007/978-3-319-49996-3_3
- Mean field control hierarchy, Applied Mathematics and Optimization, Volume 76 (2017) no. 1, pp. 93-135 | DOI:10.1007/s00245-017-9429-x | Zbl:1378.49024
- Performance bounds for the mean-field limit of constrained dynamics, Discrete and Continuous Dynamical Systems, Volume 37 (2017) no. 4, pp. 2023-2043 | DOI:10.3934/dcds.2017086 | Zbl:1366.35203
- A Boltzmann approach to mean-field sparse feedback control, IFAC-PapersOnLine, Volume 50 (2017) no. 1, p. 2898 | DOI:10.1016/j.ifacol.2017.08.646
- Mean-field Pontryagin maximum principle, Journal of Optimization Theory and Applications, Volume 175 (2017) no. 1, pp. 1-38 | DOI:10.1007/s10957-017-1149-5 | Zbl:1386.49003
- Optimal control problems in transport dynamics, M
AS. Mathematical Models Methods in Applied Sciences, Volume 27 (2017) no. 3, pp. 427-451 | DOI:10.1142/s0218202517500063 | Zbl:1365.49004 - Inferring interaction rules from observations of evolutive systems. I: The variational approach., M
AS. Mathematical Models Methods in Applied Sciences, Volume 27 (2017) no. 5, pp. 909-951 | DOI:10.1142/s0218202517500208 | Zbl:1368.37017 - Limit theory for controlled McKean-Vlasov dynamics, SIAM Journal on Control and Optimization, Volume 55 (2017) no. 3, pp. 1641-1672 | DOI:10.1137/16m1095895 | Zbl:1362.93167
- Invisible control of self-organizing agents leaving unknown environments, SIAM Journal on Applied Mathematics, Volume 76 (2016) no. 4, pp. 1683-1710 | DOI:10.1137/15m1017016 | Zbl:1415.91230
- (Un)conditional consensus emergence under perturbed and decentralized feedback controls, Discrete and Continuous Dynamical Systems, Volume 35 (2015) no. 9, pp. 4071-4094 | DOI:10.3934/dcds.2015.35.4071 | Zbl:1335.93006
- Sparse control of alignment models in high dimension, Networks and Heterogeneous Media, Volume 10 (2015) no. 3, pp. 647-697 | DOI:10.3934/nhm.2015.10.647 | Zbl:1336.93013
- Mean-field control and Riccati equations, Networks and Heterogeneous Media, Volume 10 (2015) no. 3, pp. 699-715 | DOI:10.3934/nhm.2015.10.699 | Zbl:1332.35372
- Control to flocking of the kinetic Cucker-Smale model, SIAM Journal on Mathematical Analysis, Volume 47 (2015) no. 6, pp. 4685-4719 | DOI:10.1137/140996501 | Zbl:1327.93230
- (Un)conditional consensus emergence under feedback controls, arXiv (2015) | DOI:10.48550/arxiv.1502.06100 | arXiv:1502.06100
- Boltzmann-type control of opinion consensus through leaders, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, Volume 372 (2014) no. 2028, p. 20140138-20140138 | DOI:10.1098/rsta.2014.0138
- Kinetic description of optimal control problems and applications to opinion consensus, arXiv (2014) | DOI:10.48550/arxiv.1401.7798 | arXiv:1401.7798
- Meanfield games and model predictive control, arXiv (2014) | DOI:10.48550/arxiv.1412.7517 | arXiv:1412.7517
- Sparse Stabilization and Control of Alignment Models, arXiv (2012) | DOI:10.48550/arxiv.1210.5739 | arXiv:1210.5739
Cité par 111 documents. Sources : Crossref, NASA ADS, zbMATH