Let
Mots-clés : Hölder, regularity, Lipschitz
@article{COCV_2011__17_4_1133_0, author = {Mariconda, Carlo and Treu, Giulia}, title = {A {Haar-Rado} type theorem for minimizers in {Sobolev} spaces}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {1133--1143}, publisher = {EDP-Sciences}, volume = {17}, number = {4}, year = {2011}, doi = {10.1051/cocv/2010038}, mrnumber = {2859868}, zbl = {1239.49031}, language = {en}, url = {https://www.numdam.org/articles/10.1051/cocv/2010038/} }
TY - JOUR AU - Mariconda, Carlo AU - Treu, Giulia TI - A Haar-Rado type theorem for minimizers in Sobolev spaces JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2011 SP - 1133 EP - 1143 VL - 17 IS - 4 PB - EDP-Sciences UR - https://www.numdam.org/articles/10.1051/cocv/2010038/ DO - 10.1051/cocv/2010038 LA - en ID - COCV_2011__17_4_1133_0 ER -
%0 Journal Article %A Mariconda, Carlo %A Treu, Giulia %T A Haar-Rado type theorem for minimizers in Sobolev spaces %J ESAIM: Control, Optimisation and Calculus of Variations %D 2011 %P 1133-1143 %V 17 %N 4 %I EDP-Sciences %U https://www.numdam.org/articles/10.1051/cocv/2010038/ %R 10.1051/cocv/2010038 %G en %F COCV_2011__17_4_1133_0
Mariconda, Carlo; Treu, Giulia. A Haar-Rado type theorem for minimizers in Sobolev spaces. ESAIM: Control, Optimisation and Calculus of Variations, Tome 17 (2011) no. 4, pp. 1133-1143. doi : 10.1051/cocv/2010038. https://www.numdam.org/articles/10.1051/cocv/2010038/
[1] Analyse fonctionnelle : théorie et applications. Collection Mathématiques Appliquées pour la Maîtrise [Collection of Applied Mathematics for the Master's Degree], Masson, Paris (1983). | MR | Zbl
,[2] Équivalence de deux inéquations variationnelles et applications. Arch. Rational Mech. Anal. 41 (1971) 254-265. | MR | Zbl
and ,[3] On the bounded slope condition and the validity of the Euler Lagrange equation. SIAM J. Control Optim. 40 (2002) 1270-1279. | MR | Zbl
,[4] Comparison results and estimates on the gradient without strict convexity. SIAM J. Control Optim. 46 (2007) 738-749. | MR
,[5] Continuity of solutions to a basic problem in the calculus of variations. Ann. Sc. Norm. Super. Pisa Cl. Sci. 4 (2005) 511-530. | Numdam | MR | Zbl
,[6] Measure theory and fine properties of functions. Studies in Advanced Mathematics, CRC Press, Boca Raton (1992). | MR | Zbl
and ,[7] An introduction to the regularity theory for elliptic systems, harmonic maps and minimal graphs, Scuola Normale Superiore di Pisa (Nuova Serie) [Lecture Notes. Scuola Normale Superiore di Pisa (New Series)] 2. Edizioni della Normale, Pisa (2005). | MR | Zbl
and ,[8] On the bounded slope condition. Pacific J. Math. 18 (1966) 495-511. | MR | Zbl
,[9] On some non-linear elliptic differential-functional equations. Acta Math. 115 (1966) 271-310. | MR | Zbl
and ,[10] Lipschitz regularity for minima without strict convexity of the Lagrangian. J. Differ. Equ. 243 (2007) 388-413. | MR | Zbl
and ,[11] Local Lipschitz regularity of minima for a scalar problem of the calculus of variations. Commun. Contemp. Math. 10 (2008) 1129-1149. | MR | Zbl
and ,[12] Hölder regularity for a classical problem of the calculus of variations. Adv. Calc. Var. 2 (2009) 311-320. | MR | Zbl
and ,[13] Un teorema di esistenza e unicità per il problema dell'area minima in n variabili. Ann. Scuola Norm. Sup. Pisa 19 (1965) 233-249. | Numdam | MR | Zbl
,[14] On the equivalence of two variational problems. Calc. Var. Partial Differential Equations 11 (2000) 307-319. | MR | Zbl
and ,- Local Lipschitz continuity for energy integrals with slow growth and lower order terms, Nonlinear Analysis: Real World Applications, Volume 82 (2025), p. 104224 | DOI:10.1016/j.nonrwa.2024.104224
- The bounded slope condition for parabolic equations with time-dependent integrands, Nonlinear Differential Equations and Applications NoDEA, Volume 30 (2023) no. 6 | DOI:10.1007/s00030-023-00876-6
- Lipschitz minimizers for a class of integral functionals under the bounded slope condition, Nonlinear Analysis, Volume 216 (2022), p. 112689 | DOI:10.1016/j.na.2021.112689
- On the Lipschitz Regularity for Minima of Functionals Depending on
, , and under the Bounded Slope Condition, SIAM Journal on Control and Optimization, Volume 60 (2022) no. 3, p. 1347 | DOI:10.1137/21m1396617 - An evolutionary Haar-Rado type theorem, manuscripta mathematica, Volume 168 (2022) no. 1-2, p. 65 | DOI:10.1007/s00229-021-01293-8
- Non-occurrence of the Lavrentiev phenomenon for a class of convex nonautonomous Lagrangians, Open Mathematics, Volume 18 (2020) no. 1, p. 1 | DOI:10.1515/math-2020-0001
- Continuity properties of solutions to some degenerate elliptic equations, Journal of Mathematical Analysis and Applications, Volume 379 (2011) no. 2, p. 788 | DOI:10.1016/j.jmaa.2011.02.001
Cité par 7 documents. Sources : Crossref