This paper focuses on the analytical properties of the solutions to the continuity equation with non local flow. Our driving examples are a supply chain model and an equation for the description of pedestrian flows. To this aim, we prove the well posedness of weak entropy solutions in a class of equations comprising these models. Then, under further regularity conditions, we prove the differentiability of solutions with respect to the initial datum and characterize this derivative. A necessary condition for the optimality of suitable integral functionals then follows.
Mots-clés : optimal control of the continuity equation, non-local flows
@article{COCV_2011__17_2_353_0, author = {Colombo, Rinaldo M. and Herty, Michael and Mercier, Magali}, title = {Control of the continuity equation with a non local flow}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {353--379}, publisher = {EDP-Sciences}, volume = {17}, number = {2}, year = {2011}, doi = {10.1051/cocv/2010007}, mrnumber = {2801323}, zbl = {1232.35176}, language = {en}, url = {https://www.numdam.org/articles/10.1051/cocv/2010007/} }
TY - JOUR AU - Colombo, Rinaldo M. AU - Herty, Michael AU - Mercier, Magali TI - Control of the continuity equation with a non local flow JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2011 SP - 353 EP - 379 VL - 17 IS - 2 PB - EDP-Sciences UR - https://www.numdam.org/articles/10.1051/cocv/2010007/ DO - 10.1051/cocv/2010007 LA - en ID - COCV_2011__17_2_353_0 ER -
%0 Journal Article %A Colombo, Rinaldo M. %A Herty, Michael %A Mercier, Magali %T Control of the continuity equation with a non local flow %J ESAIM: Control, Optimisation and Calculus of Variations %D 2011 %P 353-379 %V 17 %N 2 %I EDP-Sciences %U https://www.numdam.org/articles/10.1051/cocv/2010007/ %R 10.1051/cocv/2010007 %G en %F COCV_2011__17_2_353_0
Colombo, Rinaldo M.; Herty, Michael; Mercier, Magali. Control of the continuity equation with a non local flow. ESAIM: Control, Optimisation and Calculus of Variations, Tome 17 (2011) no. 2, pp. 353-379. doi : 10.1051/cocv/2010007. https://www.numdam.org/articles/10.1051/cocv/2010007/
[1] Dynamic modeling and control of congestion-prone systems. Oper. Res. 24 (1976) 400-419. | MR | Zbl
,[2] Transport equation and Cauchy problem for non-smooth vector fields, in Calculus of variations and nonlinear partial differential equations, Lecture Notes in Math. 1927, Springer, Berlin, Germany (2008) 1-41. | MR | Zbl
,[3] A model for the dynamics of large queuing networks and supply chains. SIAM J. Appl. Math. 66 (2006) 896-920. | MR | Zbl
, and ,[4] A continuum model for a re-entrant factory. Oper. Res. 54 (2006) 933-950. | Zbl
, , , and ,[5] Measure valued solutions to conservation laws motivated by traffic modelling. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 462 (2006) 1791-1803. | MR | Zbl
, and ,[6] On the shift differentiability of the flow generated by a hyperbolic system of conservation laws. Discrete Contin. Dynam. Systems 6 (2000) 329-350. | MR | Zbl
,[7] One-dimensional transport equations with discontinuous coefficients. Nonlinear Anal. 32 (1998) 891-933. | MR | Zbl
and ,[8] Differentiability with respect to initial data for a scalar conservation law, in Hyperbolic problems: theory, numerics, applications, Internat. Ser. Numer. Math., Birkhäuser, Basel, Switzerland (1999). | MR | Zbl
and ,[9] Shift-differentiability of the flow generated by a conservation law. Discrete Contin. Dynam. Systems 3 (1997) 35-58. | MR | Zbl
and ,[10] Shift differentials of maps in BV spaces, in Nonlinear theory of generalized functions (Vienna, 1997), Res. Notes Math. 401, Chapman & Hall/CRC, Boca Raton, USA (1999) 47-61. | MR | Zbl
and ,[11] Optimality conditions for solutions to hyperbolic balance laws, in Control methods in PDE-dynamical systems, Contemp. Math. 426, AMS, USA (2007) 129-152. | MR
and ,[12] A eulerian approach to the analysis of rendez-vous algorithms, in Proceedings of the IFAC World Congress (2008).
, and ,[13] On the optimization of the initial boundary value problem for a conservation law. J. Math. Analysis Appl. 291 (2004) 82-99. | MR | Zbl
and ,[14] Pedestrian flows and non-classical shocks. Math. Methods Appl. Sci. 28 (2005) 1553-1567. | MR | Zbl
and ,[15] Stability and total variation estimates on general scalar balance laws. Commun. Math. Sci. 7 (2009) 37-65. | MR | Zbl
, and ,[16] On the continuum modeling of crowds, in Hyperbolic Problems: Theory, Numerics, Applications 67, Proceedings of Symposia in Applied Mathematics, E. Tadmor, J.-G. Liu and A.E. Tzavaras Eds., American Mathematical Society, Providence, USA (2009). | MR | Zbl
, , and ,[17] First-order macroscopic modelling of human crowd dynamics. Math. Models Methods Appl. Sci. 18 (2008) 1217-1247. | MR | Zbl
and ,[18] Conservation law constrained optimization based upon Front-Tracking. ESAIM: M2AN 40 (2006) 939-960. | Numdam | MR | Zbl
, , and ,[19] A continuum theory for the flow of pedestrians. Transportation Res. Part B 36 (2002) 507-535.
,[20] Capacity loading and release planning in work-in-progess (wip) and lead-times. J. Mfg. Oper. Mgt. 2 (1989) 105-123.
,[21] First order quasilinear equations with several independent variables. Mat. Sb. (N.S.) 81 (1970) 228-255. | MR | Zbl
,[22] Control of continuum models of production systems. IEEE Trans. Automat. Contr. (to appear).
, , and ,[23] Existence of solutions of the hyperbolic Keller-Segel model. Trans. Amer. Math. Soc. 361 (2009) 2319-2335. | MR | Zbl
and ,[24] A sensitivity and adjoint calculus for discontinuous solutions of hyperbolic conservation laws with source terms. SIAM J. Control Optim. 41 (2002) 740. | MR | Zbl
,[25] Adjoint-based derivative computations for the optimal control of discontinuous solutions of hyperbolic conservation laws. Syst. Contr. Lett. 48 (2003) 313-328. | MR | Zbl
,[26] Non-stationary flows of an ideal incompressible fluid. Ž. Vyčisl. Mat. i Mat. Fiz. 3 (1963) 1032-1066. | MR | Zbl
,- Lagrangian stability for a system of non-local continuity equations under Osgood condition, New Trends in Sub-Riemannian Geometry, Volume 809 (2025), p. 123 | DOI:10.1090/conm/809/16205
- Well-posedness and error estimates for coupled systems of nonlocal conservation laws, IMA Journal of Numerical Analysis, Volume 44 (2024) no. 6, p. 3354 | DOI:10.1093/imanum/drad101
- On the singular limit problem in nonlocal balance laws: Applications to nonlocal lane-changing traffic flow models, Journal of Mathematical Analysis and Applications, Volume 537 (2024) no. 2, p. 128358 | DOI:10.1016/j.jmaa.2024.128358
- An overview on the local limit of non-local conservation laws, and a new proof of a compactness estimate, Journées équations aux dérivées partielles (2024), p. 1 | DOI:10.5802/jedp.681
- Convergence of the numerical approximations and well-posedness: Nonlocal conservation laws with rough flux, Mathematics of Computation (2024) | DOI:10.1090/mcom/3976
- A non-local traffic flow model for 1-to-1 junctions with buffer, Networks and Heterogeneous Media, Volume 19 (2024) no. 1, p. 405 | DOI:10.3934/nhm.2024018
- On the accuracy of the finite volume approximations to nonlocal conservation laws, Numerische Mathematik, Volume 156 (2024) no. 1, p. 237 | DOI:10.1007/s00211-023-01388-2
- Trajectory Stabilization of Nonlocal Continuity Equations by Localized Controls, SIAM Journal on Control and Optimization, Volume 62 (2024) no. 6, p. 3315 | DOI:10.1137/24m1644274
- A unified non-local damage model for hydraulic fracture in porous media, Acta Geotechnica, Volume 18 (2023) no. 10, p. 5083 | DOI:10.1007/s11440-023-01873-w
- Convergence of a second-order scheme for non-local conservation laws, ESAIM: Mathematical Modelling and Numerical Analysis, Volume 57 (2023) no. 6, p. 3439 | DOI:10.1051/m2an/2023080
- General renewal equations motivated by biology and epidemiology, Journal of Differential Equations, Volume 354 (2023), p. 133 | DOI:10.1016/j.jde.2023.01.012
- Feedback Strategies in a Game-Theoretical Control Problem for a Nonlocal Continuity Equation, Mathematical Notes, Volume 114 (2023) no. 3-4, p. 457 | DOI:10.1134/s0001434623090183
- A Hilliges-Weidlich-type scheme for a one-dimensional scalar conservation law with nonlocal flux, Networks and Heterogeneous Media, Volume 18 (2023) no. 2, p. 664 | DOI:10.3934/nhm.2023029
- On the singular limit problem for a discontinuous nonlocal conservation law, Nonlinear Analysis, Volume 237 (2023), p. 113381 | DOI:10.1016/j.na.2023.113381
- Nonlocal balance laws – an overview over recent results, Numerical Control: Part B, Volume 24 (2023), p. 183 | DOI:10.1016/bs.hna.2022.11.001
- Позиционные стратегии в игровой задаче управления нелокальным уравнением неразрывности, Математические заметки, Volume 114 (2023) no. 4, p. 525 | DOI:10.4213/mzm13898
- Controllability for a highly re-entrant manufacturing system with local and nonlocal velocity, European Journal of Control, Volume 67 (2022), p. 100716 | DOI:10.1016/j.ejcon.2022.100716
- Kinetic Derivation of Aw–Rascle–Zhang-Type Traffic Models with Driver-Assist Vehicles, Journal of Statistical Physics, Volume 186 (2022) no. 1 | DOI:10.1007/s10955-021-02862-7
- Modeling Multilane Traffic with Moving Obstacles by Nonlocal Balance Laws, SIAM Journal on Applied Dynamical Systems, Volume 21 (2022) no. 2, p. 1495 | DOI:10.1137/20m1366654
- Differentiability With Respect to the Initial Condition for Hamilton–Jacobi Equations, SIAM Journal on Mathematical Analysis, Volume 54 (2022) no. 5, p. 5388 | DOI:10.1137/22m1469353
- Nonlocal balance equations with parameters in the space of signed measures, Sbornik: Mathematics, Volume 213 (2022) no. 1, p. 63 | DOI:10.1070/sm9516
- Нелокальные уравнения баланса с параметром в пространстве знакопеременных мер, Математический сборник, Volume 213 (2022) no. 1, p. 69 | DOI:10.4213/sm9516
- Local limit of nonlocal traffic models: Convergence results and total variation blow-up, Annales de l'Institut Henri Poincaré C, Analyse non linéaire, Volume 38 (2021) no. 5, p. 1653 | DOI:10.1016/j.anihpc.2020.12.002
- Modeling of crowds in regions with moving obstacles, Discrete Continuous Dynamical Systems, Volume 41 (2021) no. 11, p. 5009 | DOI:10.3934/dcds.2021066
- An Overview of Non-local Traffic Flow Models, Mathematical Descriptions of Traffic Flow: Micro, Macro and Kinetic Models, Volume 12 (2021), p. 79 | DOI:10.1007/978-3-030-66560-9_5
- Weak Measure-Valued Solutions of a Nonlinear Hyperbolic Conservation Law, SIAM Journal on Mathematical Analysis, Volume 53 (2021) no. 4, p. 4417 | DOI:10.1137/19m1309109
- Well‐posedness and control in a hyperbolic–parabolic parasitoid–parasite system, Studies in Applied Mathematics, Volume 147 (2021) no. 3, p. 839 | DOI:10.1111/sapm.12402
- Boundary Controllability and Asymptotic Stabilization of a Nonlocal Traffic Flow Model, Vietnam Journal of Mathematics, Volume 49 (2021) no. 3, p. 957 | DOI:10.1007/s10013-021-00506-7
- Description of single-point wind time series along railways, Wind Forecasting in Railway Engineering (2021), p. 69 | DOI:10.1016/b978-0-12-823706-9.00003-x
- Crowd Dynamics Through Conservation Laws, Crowd Dynamics, Volume 2 (2020), p. 83 | DOI:10.1007/978-3-030-50450-2_5
- A convergent finite volume method for the Kuramoto equation and related nonlocal conservation laws, IMA Journal of Numerical Analysis, Volume 40 (2020) no. 1, p. 405 | DOI:10.1093/imanum/dry074
- Impulsive control of nonlocal transport equations, Journal of Differential Equations, Volume 269 (2020) no. 4, p. 3585 | DOI:10.1016/j.jde.2020.03.007
- Stability results for the continuity equation, Systems Control Letters, Volume 135 (2020), p. 104594 | DOI:10.1016/j.sysconle.2019.104594
- Well-posedness of the non-local conservation law by stochastic perturbation, manuscripta mathematica, Volume 162 (2020) no. 3-4, p. 367 | DOI:10.1007/s00229-019-01129-6
- On the Singular Local Limit for Conservation Laws with Nonlocal Fluxes, Archive for Rational Mechanics and Analysis, Volume 233 (2019) no. 3, p. 1131 | DOI:10.1007/s00205-019-01375-8
- On approximation of local conservation laws by nonlocal conservation laws, Journal of Mathematical Analysis and Applications, Volume 475 (2019) no. 2, p. 1927 | DOI:10.1016/j.jmaa.2019.03.063
- Kinetic-Controlled Hydrodynamics for Traffic Models with Driver-Assist Vehicles, Multiscale Modeling Simulation, Volume 17 (2019) no. 2, p. 716 | DOI:10.1137/18m1203766
- Controllability and stabilization of a conservation law modeling a highly re-entrant manufacturing system, Nonlinear Analysis, Volume 189 (2019), p. 111577 | DOI:10.1016/j.na.2019.111577
- Approximate and Exact Controllability of the Continuity Equation with a Localized Vector Field, SIAM Journal on Control and Optimization, Volume 57 (2019) no. 2, p. 1284 | DOI:10.1137/17m1152917
- Maximum Principle Satisfying CWENO Schemes for Nonlocal Conservation Laws, SIAM Journal on Scientific Computing, Volume 41 (2019) no. 2, p. A973 | DOI:10.1137/18m1175586
- Optimal boundary control of a continuum model for a highly re-entrant manufacturing system, Transactions of the Institute of Measurement and Control, Volume 41 (2019) no. 5, p. 1373 | DOI:10.1177/0142331218778100
- Optimal Control Problem for a Conveyor-Type Production Line, Cybernetics and Systems Analysis, Volume 54 (2018) no. 5, p. 744 | DOI:10.1007/s10559-018-0076-2
- Analysis of a system of nonlocal balance laws with weighted work in progress, Journal of Hyperbolic Differential Equations, Volume 15 (2018) no. 03, p. 375 | DOI:10.1142/s0219891618500145
- Existence, uniqueness and regularity of multi-dimensional nonlocal balance laws with damping, Journal of Mathematical Analysis and Applications, Volume 466 (2018) no. 1, p. 18 | DOI:10.1016/j.jmaa.2018.05.013
- Nonlocal Conservation Laws in Bounded Domains, SIAM Journal on Mathematical Analysis, Volume 50 (2018) no. 4, p. 4041 | DOI:10.1137/18m1171783
- Nonlocal Scalar Conservation Laws on Bounded Domains and Applications in Traffic Flow, SIAM Journal on Mathematical Analysis, Volume 50 (2018) no. 6, p. 6271 | DOI:10.1137/18m119817x
- High-Order Numerical Schemes for One-Dimensional Nonlocal Conservation Laws, SIAM Journal on Scientific Computing, Volume 40 (2018) no. 1, p. A288 | DOI:10.1137/16m110825x
- Performance bounds for the mean-field limit of constrained dynamics, Discrete Continuous Dynamical Systems - A, Volume 37 (2017) no. 4, p. 2023 | DOI:10.3934/dcds.2017086
- A Nonlocal Version of Wavefront Tracking Motivated by Kuramoto-Sakaguchi Equation, Innovative Algorithms and Analysis, Volume 16 (2017), p. 1 | DOI:10.1007/978-3-319-49262-9_1
- On the global well-posedness of BV weak solutions to the Kuramoto–Sakaguchi equation, Journal of Differential Equations, Volume 262 (2017) no. 2, p. 978 | DOI:10.1016/j.jde.2016.10.004
- Existence, uniqueness and regularity results on nonlocal balance laws, Journal of Differential Equations, Volume 263 (2017) no. 7, p. 4023 | DOI:10.1016/j.jde.2017.05.015
- The initial–boundary value problem for general non-local scalar conservation laws in one space dimension, Nonlinear Analysis, Volume 161 (2017), p. 131 | DOI:10.1016/j.na.2017.05.017
- Global Feedback Stabilization for a Class of Nonlocal Transport Equations: The Continuous and Discrete Case, SIAM Journal on Control and Optimization, Volume 55 (2017) no. 2, p. 760 | DOI:10.1137/15m1048914
- Crowd dynamics through non-local conservation laws, Bulletin of the Brazilian Mathematical Society, New Series, Volume 47 (2016) no. 1, p. 37 | DOI:10.1007/s00574-016-0120-7
- Well-posedness and finite volume approximations of the LWR traffic flow model with non-local velocity, Networks and Heterogeneous Media, Volume 11 (2016) no. 1, p. 107 | DOI:10.3934/nhm.2016.11.107
- Biological and industrial models motivating nonlocal conservation laws: A review of analytic and numerical results, Networks and Heterogeneous Media, Volume 11 (2016) no. 1, p. 49 | DOI:10.3934/nhm.2016.11.49
- On optimization of a highly re-entrant production system, Networks and Heterogeneous Media, Volume 11 (2016) no. 3, p. 415 | DOI:10.3934/nhm.2016003
- Well-posedness of a conservation law with non-local flux arising in traffic flow modeling, Numerische Mathematik, Volume 132 (2016) no. 2, p. 217 | DOI:10.1007/s00211-015-0717-6
- On the Numerical Integration of Scalar Nonlocal Conservation Laws, ESAIM: Mathematical Modelling and Numerical Analysis, Volume 49 (2015) no. 1, p. 19 | DOI:10.1051/m2an/2014023
- Analysis of a system of nonlocal conservation laws for multi-commodity flow on networks, Networks Heterogeneous Media, Volume 10 (2015) no. 4, p. 749 | DOI:10.3934/nhm.2015.10.749
- Nonlocal Systems of Conservation Laws in Several Space Dimensions, SIAM Journal on Numerical Analysis, Volume 53 (2015) no. 2, p. 963 | DOI:10.1137/140975255
- On Numerical Methods for Hyperbolic Conservation Laws and Related Equations Modelling Sedimentation of Solid-Liquid Suspensions, Hyperbolic Conservation Laws and Related Analysis with Applications, Volume 49 (2014), p. 23 | DOI:10.1007/978-3-642-39007-4_2
- Multiscale Modeling by Time-Evolving Measures, Multiscale Modeling of Pedestrian Dynamics, Volume 12 (2014), p. 109 | DOI:10.1007/978-3-319-06620-2_5
- Basic Theory of Measure-Based Models, Multiscale Modeling of Pedestrian Dynamics, Volume 12 (2014), p. 137 | DOI:10.1007/978-3-319-06620-2_6
- Problems and Simulations, Multiscale Modeling of Pedestrian Dynamics, Volume 12 (2014), p. 29 | DOI:10.1007/978-3-319-06620-2_2
- An Introduction to the Modeling of Crowd Dynamics, Multiscale Modeling of Pedestrian Dynamics, Volume 12 (2014), p. 3 | DOI:10.1007/978-3-319-06620-2_1
- Psychological Insights, Multiscale Modeling of Pedestrian Dynamics, Volume 12 (2014), p. 53 | DOI:10.1007/978-3-319-06620-2_3
- An Overview of the Modeling of Crowd Dynamics, Multiscale Modeling of Pedestrian Dynamics, Volume 12 (2014), p. 73 | DOI:10.1007/978-3-319-06620-2_4
- Regularity Theory and Adjoint-Based Optimality Conditions for a Nonlinear Transport Equation with Nonlocal Velocity, SIAM Journal on Control and Optimization, Volume 52 (2014) no. 4, p. 2141 | DOI:10.1137/120873832
- Modeling, Analysis and Optimization of Particle Growth, Nucleation and Ripening by the Way of Nonlinear Hyperbolic Integro-Partial Differential Equations, Trends in PDE Constrained Optimization, Volume 165 (2014), p. 471 | DOI:10.1007/978-3-319-05083-6_30
- A hyperbolic model for the laser cutting process, Applied Mathematical Modelling, Volume 37 (2013) no. 14-15, p. 7810 | DOI:10.1016/j.apm.2013.02.031
- Existence and uniqueness of measure solutions for a system of continuity equations with non-local flow, Nonlinear Differential Equations and Applications NoDEA, Volume 20 (2013) no. 3, p. 523 | DOI:10.1007/s00030-012-0164-3
- Output Feedback Stabilization for a Scalar Conservation Law with a Nonlocal Velocity, SIAM Journal on Mathematical Analysis, Volume 45 (2013) no. 5, p. 2646 | DOI:10.1137/120902203
- Nonlocal Crowd Dynamics Models for Several Populations, Acta Mathematica Scientia, Volume 32 (2012) no. 1, p. 177 | DOI:10.1016/s0252-9602(12)60011-3
- On a nonlocal hyperbolic conservation law arising from a gradient constraint problem, Bulletin of the Brazilian Mathematical Society, New Series, Volume 43 (2012) no. 4, p. 599 | DOI:10.1007/s00574-012-0028-9
- Optimal Control of Mean Field Models for Phase Transitions, IFAC Proceedings Volumes, Volume 45 (2012) no. 2, p. 1107 | DOI:10.3182/20120215-3-at-3016.00196
- Controllability for a scalar conservation law with nonlocal velocity, Journal of Differential Equations, Volume 252 (2012) no. 1, p. 181 | DOI:10.1016/j.jde.2011.08.042
- AN INTEGRO-DIFFERENTIAL CONSERVATION LAW ARISING IN A MODEL OF GRANULAR FLOW, Journal of Hyperbolic Differential Equations, Volume 09 (2012) no. 01, p. 105 | DOI:10.1142/s0219891612500038
- An Analytical Framework to Describe the Interactions Between Individuals and a Continuum, Journal of Nonlinear Science, Volume 22 (2012) no. 1, p. 39 | DOI:10.1007/s00332-011-9107-0
- A CLASS OF NONLOCAL MODELS FOR PEDESTRIAN TRAFFIC, Mathematical Models and Methods in Applied Sciences, Volume 22 (2012) no. 04 | DOI:10.1142/s0218202511500230
- Non-local crowd dynamics, Comptes Rendus. Mathématique, Volume 349 (2011) no. 13-14, p. 769 | DOI:10.1016/j.crma.2011.07.005
- Analysis and control of a scalar conservation law modeling a highly re-entrant manufacturing system, Journal of Differential Equations, Volume 250 (2011) no. 2, p. 949 | DOI:10.1016/j.jde.2010.09.003
Cité par 82 documents. Sources : Crossref