Control of the continuity equation with a non local flow
ESAIM: Control, Optimisation and Calculus of Variations, Tome 17 (2011) no. 2, pp. 353-379.

This paper focuses on the analytical properties of the solutions to the continuity equation with non local flow. Our driving examples are a supply chain model and an equation for the description of pedestrian flows. To this aim, we prove the well posedness of weak entropy solutions in a class of equations comprising these models. Then, under further regularity conditions, we prove the differentiability of solutions with respect to the initial datum and characterize this derivative. A necessary condition for the optimality of suitable integral functionals then follows.

DOI : 10.1051/cocv/2010007
Classification : 35L65, 49K20, 93C20
Mots-clés : optimal control of the continuity equation, non-local flows
@article{COCV_2011__17_2_353_0,
     author = {Colombo, Rinaldo M. and Herty, Michael and Mercier, Magali},
     title = {Control of the continuity equation with a non local flow},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {353--379},
     publisher = {EDP-Sciences},
     volume = {17},
     number = {2},
     year = {2011},
     doi = {10.1051/cocv/2010007},
     mrnumber = {2801323},
     zbl = {1232.35176},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/cocv/2010007/}
}
TY  - JOUR
AU  - Colombo, Rinaldo M.
AU  - Herty, Michael
AU  - Mercier, Magali
TI  - Control of the continuity equation with a non local flow
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2011
SP  - 353
EP  - 379
VL  - 17
IS  - 2
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/cocv/2010007/
DO  - 10.1051/cocv/2010007
LA  - en
ID  - COCV_2011__17_2_353_0
ER  - 
%0 Journal Article
%A Colombo, Rinaldo M.
%A Herty, Michael
%A Mercier, Magali
%T Control of the continuity equation with a non local flow
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2011
%P 353-379
%V 17
%N 2
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/cocv/2010007/
%R 10.1051/cocv/2010007
%G en
%F COCV_2011__17_2_353_0
Colombo, Rinaldo M.; Herty, Michael; Mercier, Magali. Control of the continuity equation with a non local flow. ESAIM: Control, Optimisation and Calculus of Variations, Tome 17 (2011) no. 2, pp. 353-379. doi : 10.1051/cocv/2010007. https://www.numdam.org/articles/10.1051/cocv/2010007/

[1] C.E. Agnew, Dynamic modeling and control of congestion-prone systems. Oper. Res. 24 (1976) 400-419. | MR | Zbl

[2] L. Ambrosio, Transport equation and Cauchy problem for non-smooth vector fields, in Calculus of variations and nonlinear partial differential equations, Lecture Notes in Math. 1927, Springer, Berlin, Germany (2008) 1-41. | MR | Zbl

[3] D. Armbruster, P. Degond and C. Ringhofer, A model for the dynamics of large queuing networks and supply chains. SIAM J. Appl. Math. 66 (2006) 896-920. | MR | Zbl

[4] D. Armbruster, D.E. Marthaler, C. Ringhofer, K. Kempf and T.-C. Jo, A continuum model for a re-entrant factory. Oper. Res. 54 (2006) 933-950. | Zbl

[5] S. Benzoni-Gavage, R.M. Colombo and P. Gwiazda, Measure valued solutions to conservation laws motivated by traffic modelling. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 462 (2006) 1791-1803. | MR | Zbl

[6] S. Bianchini, On the shift differentiability of the flow generated by a hyperbolic system of conservation laws. Discrete Contin. Dynam. Systems 6 (2000) 329-350. | MR | Zbl

[7] F. Bouchut and F. James, One-dimensional transport equations with discontinuous coefficients. Nonlinear Anal. 32 (1998) 891-933. | MR | Zbl

[8] F. Bouchut and F. James, Differentiability with respect to initial data for a scalar conservation law, in Hyperbolic problems: theory, numerics, applications, Internat. Ser. Numer. Math., Birkhäuser, Basel, Switzerland (1999). | MR | Zbl

[9] A. Bressan and G. Guerra, Shift-differentiability of the flow generated by a conservation law. Discrete Contin. Dynam. Systems 3 (1997) 35-58. | MR | Zbl

[10] A. Bressan and M. Lewicka, Shift differentials of maps in BV spaces, in Nonlinear theory of generalized functions (Vienna, 1997), Res. Notes Math. 401, Chapman & Hall/CRC, Boca Raton, USA (1999) 47-61. | MR | Zbl

[11] A. Bressan and W. Shen, Optimality conditions for solutions to hyperbolic balance laws, in Control methods in PDE-dynamical systems, Contemp. Math. 426, AMS, USA (2007) 129-152. | MR

[12] C. Canuto, F. Fagnani and P. Tilli, A eulerian approach to the analysis of rendez-vous algorithms, in Proceedings of the IFAC World Congress (2008).

[13] R.M. Colombo and A. Groli, On the optimization of the initial boundary value problem for a conservation law. J. Math. Analysis Appl. 291 (2004) 82-99. | MR | Zbl

[14] R.M. Colombo and M.D. Rosini, Pedestrian flows and non-classical shocks. Math. Methods Appl. Sci. 28 (2005) 1553-1567. | MR | Zbl

[15] R.M. Colombo, M. Mercier and M.D. Rosini, Stability and total variation estimates on general scalar balance laws. Commun. Math. Sci. 7 (2009) 37-65. | MR | Zbl

[16] R.M. Colombo, G. Facchi, G. Maternini and M.D. Rosini, On the continuum modeling of crowds, in Hyperbolic Problems: Theory, Numerics, Applications 67, Proceedings of Symposia in Applied Mathematics, E. Tadmor, J.-G. Liu and A.E. Tzavaras Eds., American Mathematical Society, Providence, USA (2009). | MR | Zbl

[17] V. Coscia and C. Canavesio, First-order macroscopic modelling of human crowd dynamics. Math. Models Methods Appl. Sci. 18 (2008) 1217-1247. | MR | Zbl

[18] M. Gugat, M. Herty, A. Klar and G. Leugering, Conservation law constrained optimization based upon Front-Tracking. ESAIM: M2AN 40 (2006) 939-960. | Numdam | MR | Zbl

[19] R.L. Hughes, A continuum theory for the flow of pedestrians. Transportation Res. Part B 36 (2002) 507-535.

[20] U. Karmarkar, Capacity loading and release planning in work-in-progess (wip) and lead-times. J. Mfg. Oper. Mgt. 2 (1989) 105-123.

[21] S.N. Kružkov, First order quasilinear equations with several independent variables. Mat. Sb. (N.S.) 81 (1970) 228-255. | MR | Zbl

[22] M. Marca, D. Armbruster, M. Herty and C. Ringhofer, Control of continuum models of production systems. IEEE Trans. Automat. Contr. (to appear).

[23] B. Perthame and A.-L. Dalibard, Existence of solutions of the hyperbolic Keller-Segel model. Trans. Amer. Math. Soc. 361 (2009) 2319-2335. | MR | Zbl

[24] S. Ulbrich, A sensitivity and adjoint calculus for discontinuous solutions of hyperbolic conservation laws with source terms. SIAM J. Control Optim. 41 (2002) 740. | MR | Zbl

[25] S. Ulbrich, Adjoint-based derivative computations for the optimal control of discontinuous solutions of hyperbolic conservation laws. Syst. Contr. Lett. 48 (2003) 313-328. | MR | Zbl

[26] V.I. Yudovič, Non-stationary flows of an ideal incompressible fluid. Ž. Vyčisl. Mat. i Mat. Fiz. 3 (1963) 1032-1066. | MR | Zbl

  • Inversi, Marco; Stefani, Giorgio Lagrangian stability for a system of non-local continuity equations under Osgood condition, New Trends in Sub-Riemannian Geometry, Volume 809 (2025), p. 123 | DOI:10.1090/conm/809/16205
  • Aggarwal, Aekta; Holden, Helge; Vaidya, Ganesh Well-posedness and error estimates for coupled systems of nonlocal conservation laws, IMA Journal of Numerical Analysis, Volume 44 (2024) no. 6, p. 3354 | DOI:10.1093/imanum/drad101
  • Chiarello, Felisia Angela; Keimer, Alexander On the singular limit problem in nonlocal balance laws: Applications to nonlocal lane-changing traffic flow models, Journal of Mathematical Analysis and Applications, Volume 537 (2024) no. 2, p. 128358 | DOI:10.1016/j.jmaa.2024.128358
  • Colombo, Maria; Crippa, Gianluca; Marconi, Elio; Spinolo, Laura V. An overview on the local limit of non-local conservation laws, and a new proof of a compactness estimate, Journées équations aux dérivées partielles (2024), p. 1 | DOI:10.5802/jedp.681
  • Aggarwal, Aekta; Vaidya, Ganesh Convergence of the numerical approximations and well-posedness: Nonlocal conservation laws with rough flux, Mathematics of Computation (2024) | DOI:10.1090/mcom/3976
  • Chiarello, F. A.; Friedrich, J.; Göttlich, S. A non-local traffic flow model for 1-to-1 junctions with buffer, Networks and Heterogeneous Media, Volume 19 (2024) no. 1, p. 405 | DOI:10.3934/nhm.2024018
  • Aggarwal, Aekta; Holden, Helge; Vaidya, Ganesh On the accuracy of the finite volume approximations to nonlocal conservation laws, Numerische Mathematik, Volume 156 (2024) no. 1, p. 237 | DOI:10.1007/s00211-023-01388-2
  • Pogodaev, Nikolay; Rossi, Francesco Trajectory Stabilization of Nonlocal Continuity Equations by Localized Controls, SIAM Journal on Control and Optimization, Volume 62 (2024) no. 6, p. 3315 | DOI:10.1137/24m1644274
  • Zhang, Hongwei; Mobasher, Mostafa E.; Shen, Zhenzhong; Waisman, Haim A unified non-local damage model for hydraulic fracture in porous media, Acta Geotechnica, Volume 18 (2023) no. 10, p. 5083 | DOI:10.1007/s11440-023-01873-w
  • Gowda G. D., Veerappa; Kenettinkara, Sudarshan Kumar; Manoj, Nikhil Convergence of a second-order scheme for non-local conservation laws, ESAIM: Mathematical Modelling and Numerical Analysis, Volume 57 (2023) no. 6, p. 3439 | DOI:10.1051/m2an/2023080
  • Colombo, R.M.; Garavello, M.; Marcellini, F.; Rossi, E. General renewal equations motivated by biology and epidemiology, Journal of Differential Equations, Volume 354 (2023), p. 133 | DOI:10.1016/j.jde.2023.01.012
  • Kolpakova, E. A. Feedback Strategies in a Game-Theoretical Control Problem for a Nonlocal Continuity Equation, Mathematical Notes, Volume 114 (2023) no. 3-4, p. 457 | DOI:10.1134/s0001434623090183
  • Bürger, Raimund; Contreras, Harold Deivi; Villada, Luis Miguel A Hilliges-Weidlich-type scheme for a one-dimensional scalar conservation law with nonlocal flux, Networks and Heterogeneous Media, Volume 18 (2023) no. 2, p. 664 | DOI:10.3934/nhm.2023029
  • Keimer, Alexander; Pflug, Lukas On the singular limit problem for a discontinuous nonlocal conservation law, Nonlinear Analysis, Volume 237 (2023), p. 113381 | DOI:10.1016/j.na.2023.113381
  • Keimer, Alexander; Pflug, Lukas Nonlocal balance laws – an overview over recent results, Numerical Control: Part B, Volume 24 (2023), p. 183 | DOI:10.1016/bs.hna.2022.11.001
  • Kolpakova, Ekaterina Alekseevna Позиционные стратегии в игровой задаче управления нелокальным уравнением неразрывности, Математические заметки, Volume 114 (2023) no. 4, p. 525 | DOI:10.4213/mzm13898
  • Li, Qiongyuan; Shang, Peipei Controllability for a highly re-entrant manufacturing system with local and nonlocal velocity, European Journal of Control, Volume 67 (2022), p. 100716 | DOI:10.1016/j.ejcon.2022.100716
  • Dimarco, Giacomo; Tosin, Andrea; Zanella, Mattia Kinetic Derivation of Aw–Rascle–Zhang-Type Traffic Models with Driver-Assist Vehicles, Journal of Statistical Physics, Volume 186 (2022) no. 1 | DOI:10.1007/s10955-021-02862-7
  • Bayen, Alexandre; Friedrich, Jan; Keimer, Alexander; Pflug, Lukas; Veeravalli, Tanya Modeling Multilane Traffic with Moving Obstacles by Nonlocal Balance Laws, SIAM Journal on Applied Dynamical Systems, Volume 21 (2022) no. 2, p. 1495 | DOI:10.1137/20m1366654
  • Esteve-Yagüe, Carlos; Zuazua, Enrique Differentiability With Respect to the Initial Condition for Hamilton–Jacobi Equations, SIAM Journal on Mathematical Analysis, Volume 54 (2022) no. 5, p. 5388 | DOI:10.1137/22m1469353
  • Pogodaev, N. I.; Staritsyn, M. V. Nonlocal balance equations with parameters in the space of signed measures, Sbornik: Mathematics, Volume 213 (2022) no. 1, p. 63 | DOI:10.1070/sm9516
  • Pogodaev, Nikolai Ilich; Staritsyn, Maxim Vladimirovich Нелокальные уравнения баланса с параметром в пространстве знакопеременных мер, Математический сборник, Volume 213 (2022) no. 1, p. 69 | DOI:10.4213/sm9516
  • Crippa, Gianluca; Marconi, Elio; Spinolo, Laura V.; Colombo, Maria Local limit of nonlocal traffic models: Convergence results and total variation blow-up, Annales de l'Institut Henri Poincaré C, Analyse non linéaire, Volume 38 (2021) no. 5, p. 1653 | DOI:10.1016/j.anihpc.2020.12.002
  • Maltugueva, Nadezhda; Pogodaev, Nikolay Modeling of crowds in regions with moving obstacles, Discrete Continuous Dynamical Systems, Volume 41 (2021) no. 11, p. 5009 | DOI:10.3934/dcds.2021066
  • Chiarello, Felisia Angela An Overview of Non-local Traffic Flow Models, Mathematical Descriptions of Traffic Flow: Micro, Macro and Kinetic Models, Volume 12 (2021), p. 79 | DOI:10.1007/978-3-030-66560-9_5
  • Gong, Xiaoqian; Kawski, Matthias Weak Measure-Valued Solutions of a Nonlinear Hyperbolic Conservation Law, SIAM Journal on Mathematical Analysis, Volume 53 (2021) no. 4, p. 4417 | DOI:10.1137/19m1309109
  • Colombo, Rinaldo M.; Rossi, Elena Well‐posedness and control in a hyperbolic–parabolic parasitoid–parasite system, Studies in Applied Mathematics, Volume 147 (2021) no. 3, p. 839 | DOI:10.1111/sapm.12402
  • Bayen, Alexandre; Coron, Jean-Michel; De Nitti, Nicola; Keimer, Alexander; Pflug, Lukas Boundary Controllability and Asymptotic Stabilization of a Nonlocal Traffic Flow Model, Vietnam Journal of Mathematics, Volume 49 (2021) no. 3, p. 957 | DOI:10.1007/s10013-021-00506-7
  • Liu, Hui Description of single-point wind time series along railways, Wind Forecasting in Railway Engineering (2021), p. 69 | DOI:10.1016/b978-0-12-823706-9.00003-x
  • Colombo, Rinaldo M.; Lecureux-Mercier, Magali; Garavello, Mauro Crowd Dynamics Through Conservation Laws, Crowd Dynamics, Volume 2 (2020), p. 83 | DOI:10.1007/978-3-030-50450-2_5
  • Chatterjee, N; Fjordholm, U S A convergent finite volume method for the Kuramoto equation and related nonlocal conservation laws, IMA Journal of Numerical Analysis, Volume 40 (2020) no. 1, p. 405 | DOI:10.1093/imanum/dry074
  • Pogodaev, Nikolay; Staritsyn, Maxim Impulsive control of nonlocal transport equations, Journal of Differential Equations, Volume 269 (2020) no. 4, p. 3585 | DOI:10.1016/j.jde.2020.03.007
  • Karafyllis, Iasson; Krstic, Miroslav Stability results for the continuity equation, Systems Control Letters, Volume 135 (2020), p. 104594 | DOI:10.1016/j.sysconle.2019.104594
  • Olivera, Christian Well-posedness of the non-local conservation law by stochastic perturbation, manuscripta mathematica, Volume 162 (2020) no. 3-4, p. 367 | DOI:10.1007/s00229-019-01129-6
  • Colombo, Maria; Crippa, Gianluca; Spinolo, Laura V. On the Singular Local Limit for Conservation Laws with Nonlocal Fluxes, Archive for Rational Mechanics and Analysis, Volume 233 (2019) no. 3, p. 1131 | DOI:10.1007/s00205-019-01375-8
  • Keimer, Alexander; Pflug, Lukas On approximation of local conservation laws by nonlocal conservation laws, Journal of Mathematical Analysis and Applications, Volume 475 (2019) no. 2, p. 1927 | DOI:10.1016/j.jmaa.2019.03.063
  • Tosin, Andrea; Zanella, Mattia Kinetic-Controlled Hydrodynamics for Traffic Models with Driver-Assist Vehicles, Multiscale Modeling Simulation, Volume 17 (2019) no. 2, p. 716 | DOI:10.1137/18m1203766
  • Chu, Jixun; Shang, Peipei; Wang, Zhiqiang Controllability and stabilization of a conservation law modeling a highly re-entrant manufacturing system, Nonlinear Analysis, Volume 189 (2019), p. 111577 | DOI:10.1016/j.na.2019.111577
  • Duprez, Michel; Morancey, Morgan; Rossi, Francesco Approximate and Exact Controllability of the Continuity Equation with a Localized Vector Field, SIAM Journal on Control and Optimization, Volume 57 (2019) no. 2, p. 1284 | DOI:10.1137/17m1152917
  • Friedrich, Jan; Kolb, Oliver Maximum Principle Satisfying CWENO Schemes for Nonlocal Conservation Laws, SIAM Journal on Scientific Computing, Volume 41 (2019) no. 2, p. A973 | DOI:10.1137/18m1175586
  • Sun, Bing; Wu, Mi-Xia Optimal boundary control of a continuum model for a highly re-entrant manufacturing system, Transactions of the Institute of Measurement and Control, Volume 41 (2019) no. 5, p. 1373 | DOI:10.1177/0142331218778100
  • Pihnastyi, O. M.; Khodusov, V. D. Optimal Control Problem for a Conveyor-Type Production Line, Cybernetics and Systems Analysis, Volume 54 (2018) no. 5, p. 744 | DOI:10.1007/s10559-018-0076-2
  • Keimer, Alexander; Leugering, Günter; Sarkar, Tanmay Analysis of a system of nonlocal balance laws with weighted work in progress, Journal of Hyperbolic Differential Equations, Volume 15 (2018) no. 03, p. 375 | DOI:10.1142/s0219891618500145
  • Keimer, Alexander; Pflug, Lukas; Spinola, Michele Existence, uniqueness and regularity of multi-dimensional nonlocal balance laws with damping, Journal of Mathematical Analysis and Applications, Volume 466 (2018) no. 1, p. 18 | DOI:10.1016/j.jmaa.2018.05.013
  • Colombo, Rinaldo M.; Rossi, Elena Nonlocal Conservation Laws in Bounded Domains, SIAM Journal on Mathematical Analysis, Volume 50 (2018) no. 4, p. 4041 | DOI:10.1137/18m1171783
  • Keimer, Alexander; Pflug, Lukas; Spinola, Michele Nonlocal Scalar Conservation Laws on Bounded Domains and Applications in Traffic Flow, SIAM Journal on Mathematical Analysis, Volume 50 (2018) no. 6, p. 6271 | DOI:10.1137/18m119817x
  • Chalons, Christophe; Goatin, Paola; Villada, Luis M. High-Order Numerical Schemes for One-Dimensional Nonlocal Conservation Laws, SIAM Journal on Scientific Computing, Volume 40 (2018) no. 1, p. A288 | DOI:10.1137/16m110825x
  • Herty, Michael; Zanella, Mattia Performance bounds for the mean-field limit of constrained dynamics, Discrete Continuous Dynamical Systems - A, Volume 37 (2017) no. 4, p. 2023 | DOI:10.3934/dcds.2017086
  • Amadori, Debora; Ha, Seung-Yeal; Park, Jinyeong A Nonlocal Version of Wavefront Tracking Motivated by Kuramoto-Sakaguchi Equation, Innovative Algorithms and Analysis, Volume 16 (2017), p. 1 | DOI:10.1007/978-3-319-49262-9_1
  • Amadori, Debora; Ha, Seung-Yeal; Park, Jinyeong On the global well-posedness of BV weak solutions to the Kuramoto–Sakaguchi equation, Journal of Differential Equations, Volume 262 (2017) no. 2, p. 978 | DOI:10.1016/j.jde.2016.10.004
  • Keimer, Alexander; Pflug, Lukas Existence, uniqueness and regularity results on nonlocal balance laws, Journal of Differential Equations, Volume 263 (2017) no. 7, p. 4023 | DOI:10.1016/j.jde.2017.05.015
  • De Filippis, Cristiana; Goatin, Paola The initial–boundary value problem for general non-local scalar conservation laws in one space dimension, Nonlinear Analysis, Volume 161 (2017), p. 131 | DOI:10.1016/j.na.2017.05.017
  • Chen, Wenbin; Liu, Chang; Wang, Zhiqiang Global Feedback Stabilization for a Class of Nonlocal Transport Equations: The Continuous and Discrete Case, SIAM Journal on Control and Optimization, Volume 55 (2017) no. 2, p. 760 | DOI:10.1137/15m1048914
  • Aggarwal, Aekta; Goatin, Paola Crowd dynamics through non-local conservation laws, Bulletin of the Brazilian Mathematical Society, New Series, Volume 47 (2016) no. 1, p. 37 | DOI:10.1007/s00574-016-0120-7
  • Goatin, Paola; Scialanga, Sheila Well-posedness and finite volume approximations of the LWR traffic flow model with non-local velocity, Networks and Heterogeneous Media, Volume 11 (2016) no. 1, p. 107 | DOI:10.3934/nhm.2016.11.107
  • Colombo, Rinaldo M.; Marcellini, Francesca; Rossi, Elena Biological and industrial models motivating nonlocal conservation laws: A review of analytic and numerical results, Networks and Heterogeneous Media, Volume 11 (2016) no. 1, p. 49 | DOI:10.3934/nhm.2016.11.49
  • D'Apice, Ciro; Kogut, Peter I.; Manzo, Rosanna On optimization of a highly re-entrant production system, Networks and Heterogeneous Media, Volume 11 (2016) no. 3, p. 415 | DOI:10.3934/nhm.2016003
  • Blandin, Sebastien; Goatin, Paola Well-posedness of a conservation law with non-local flux arising in traffic flow modeling, Numerische Mathematik, Volume 132 (2016) no. 2, p. 217 | DOI:10.1007/s00211-015-0717-6
  • Amorim, Paulo; Colombo, Rinaldo M.; Teixeira, Andreia On the Numerical Integration of Scalar Nonlocal Conservation Laws, ESAIM: Mathematical Modelling and Numerical Analysis, Volume 49 (2015) no. 1, p. 19 | DOI:10.1051/m2an/2014023
  • Gugat, Martin; Keimer, Alexander; Leugering, Günter; Wang, Zhiqiang Analysis of a system of nonlocal conservation laws for multi-commodity flow on networks, Networks Heterogeneous Media, Volume 10 (2015) no. 4, p. 749 | DOI:10.3934/nhm.2015.10.749
  • Aggarwal, Aekta; Colombo, Rinaldo M.; Goatin, Paola Nonlocal Systems of Conservation Laws in Several Space Dimensions, SIAM Journal on Numerical Analysis, Volume 53 (2015) no. 2, p. 963 | DOI:10.1137/140975255
  • Betancourt, F.; Bürger, R.; Ruiz-Baier, R.; Torres, H.; Vega, C. A. On Numerical Methods for Hyperbolic Conservation Laws and Related Equations Modelling Sedimentation of Solid-Liquid Suspensions, Hyperbolic Conservation Laws and Related Analysis with Applications, Volume 49 (2014), p. 23 | DOI:10.1007/978-3-642-39007-4_2
  • Cristiani, Emiliano; Piccoli, Benedetto; Tosin, Andrea Multiscale Modeling by Time-Evolving Measures, Multiscale Modeling of Pedestrian Dynamics, Volume 12 (2014), p. 109 | DOI:10.1007/978-3-319-06620-2_5
  • Cristiani, Emiliano; Piccoli, Benedetto; Tosin, Andrea Basic Theory of Measure-Based Models, Multiscale Modeling of Pedestrian Dynamics, Volume 12 (2014), p. 137 | DOI:10.1007/978-3-319-06620-2_6
  • Cristiani, Emiliano; Piccoli, Benedetto; Tosin, Andrea Problems and Simulations, Multiscale Modeling of Pedestrian Dynamics, Volume 12 (2014), p. 29 | DOI:10.1007/978-3-319-06620-2_2
  • Cristiani, Emiliano; Piccoli, Benedetto; Tosin, Andrea An Introduction to the Modeling of Crowd Dynamics, Multiscale Modeling of Pedestrian Dynamics, Volume 12 (2014), p. 3 | DOI:10.1007/978-3-319-06620-2_1
  • Cristiani, Emiliano; Piccoli, Benedetto; Tosin, Andrea Psychological Insights, Multiscale Modeling of Pedestrian Dynamics, Volume 12 (2014), p. 53 | DOI:10.1007/978-3-319-06620-2_3
  • Cristiani, Emiliano; Piccoli, Benedetto; Tosin, Andrea An Overview of the Modeling of Crowd Dynamics, Multiscale Modeling of Pedestrian Dynamics, Volume 12 (2014), p. 73 | DOI:10.1007/978-3-319-06620-2_4
  • Gröschel, Michael; Keimer, Alexander; Leugering, Günter; Wang, Zhiqiang Regularity Theory and Adjoint-Based Optimality Conditions for a Nonlinear Transport Equation with Nonlocal Velocity, SIAM Journal on Control and Optimization, Volume 52 (2014) no. 4, p. 2141 | DOI:10.1137/120873832
  • Gröschel, Michael; Peukert, Wolfgang; Leugering, Günter Modeling, Analysis and Optimization of Particle Growth, Nucleation and Ripening by the Way of Nonlinear Hyperbolic Integro-Partial Differential Equations, Trends in PDE Constrained Optimization, Volume 165 (2014), p. 471 | DOI:10.1007/978-3-319-05083-6_30
  • Colombo, R.M.; Guerra, G.; Herty, M.; Marcellini, F. A hyperbolic model for the laser cutting process, Applied Mathematical Modelling, Volume 37 (2013) no. 14-15, p. 7810 | DOI:10.1016/j.apm.2013.02.031
  • Crippa, Gianluca; Lécureux-Mercier, Magali Existence and uniqueness of measure solutions for a system of continuity equations with non-local flow, Nonlinear Differential Equations and Applications NoDEA, Volume 20 (2013) no. 3, p. 523 | DOI:10.1007/s00030-012-0164-3
  • Coron, Jean-Michel; Wang, Zhiqiang Output Feedback Stabilization for a Scalar Conservation Law with a Nonlocal Velocity, SIAM Journal on Mathematical Analysis, Volume 45 (2013) no. 5, p. 2646 | DOI:10.1137/120902203
  • Colombo, Rinaldo M.; Lécureux-Mercier, Magali Nonlocal Crowd Dynamics Models for Several Populations, Acta Mathematica Scientia, Volume 32 (2012) no. 1, p. 177 | DOI:10.1016/s0252-9602(12)60011-3
  • Amorim, Paulo On a nonlocal hyperbolic conservation law arising from a gradient constraint problem, Bulletin of the Brazilian Mathematical Society, New Series, Volume 43 (2012) no. 4, p. 599 | DOI:10.1007/s00574-012-0028-9
  • Kimmerle, Sven-Joachim Optimal Control of Mean Field Models for Phase Transitions, IFAC Proceedings Volumes, Volume 45 (2012) no. 2, p. 1107 | DOI:10.3182/20120215-3-at-3016.00196
  • Coron, Jean-Michel; Wang, Zhiqiang Controllability for a scalar conservation law with nonlocal velocity, Journal of Differential Equations, Volume 252 (2012) no. 1, p. 181 | DOI:10.1016/j.jde.2011.08.042
  • AMADORI, DEBORA; SHEN, WEN AN INTEGRO-DIFFERENTIAL CONSERVATION LAW ARISING IN A MODEL OF GRANULAR FLOW, Journal of Hyperbolic Differential Equations, Volume 09 (2012) no. 01, p. 105 | DOI:10.1142/s0219891612500038
  • Colombo, Rinaldo M.; Lécureux-Mercier, Magali An Analytical Framework to Describe the Interactions Between Individuals and a Continuum, Journal of Nonlinear Science, Volume 22 (2012) no. 1, p. 39 | DOI:10.1007/s00332-011-9107-0
  • COLOMBO, RINALDO M.; GARAVELLO, MAURO; LÉCUREUX-MERCIER, MAGALI A CLASS OF NONLOCAL MODELS FOR PEDESTRIAN TRAFFIC, Mathematical Models and Methods in Applied Sciences, Volume 22 (2012) no. 04 | DOI:10.1142/s0218202511500230
  • Colombo, Rinaldo M.; Garavello, Mauro; Lécureux-Mercier, Magali Non-local crowd dynamics, Comptes Rendus. Mathématique, Volume 349 (2011) no. 13-14, p. 769 | DOI:10.1016/j.crma.2011.07.005
  • Shang, Peipei; Wang, Zhiqiang Analysis and control of a scalar conservation law modeling a highly re-entrant manufacturing system, Journal of Differential Equations, Volume 250 (2011) no. 2, p. 949 | DOI:10.1016/j.jde.2010.09.003

Cité par 82 documents. Sources : Crossref