The goal of this article is to analyze the observability properties for a space semi-discrete approximation scheme derived from a mixed finite element method of the 1d wave equation on nonuniform meshes. More precisely, we prove that observability properties hold uniformly with respect to the mesh-size under some assumptions, which, roughly, measures the lack of uniformity of the meshes, thus extending the work [Castro and Micu, Numer. Math. 102 (2006) 413-462] to nonuniform meshes. Our results are based on a precise description of the spectrum of the discrete approximation schemes on nonuniform meshes, and the use of Ingham's inequality. We also mention applications to the boundary null controllability of the 1d wave equation, and to stabilization properties for the 1d wave equation. We finally present some applications for the corresponding fully discrete schemes, based on recent articles by the author.
Mots-clés : spectrum, observability, wave equation, semi-discrete systems, controllability, stabilization
@article{COCV_2010__16_2_298_0, author = {Ervedoza, Sylvain}, title = {Observability properties of a semi-discrete 1d wave equation derived from a mixed finite element method on nonuniform meshes}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {298--326}, publisher = {EDP-Sciences}, volume = {16}, number = {2}, year = {2010}, doi = {10.1051/cocv:2008071}, mrnumber = {2654195}, zbl = {1192.35109}, language = {en}, url = {https://www.numdam.org/articles/10.1051/cocv:2008071/} }
TY - JOUR AU - Ervedoza, Sylvain TI - Observability properties of a semi-discrete 1d wave equation derived from a mixed finite element method on nonuniform meshes JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2010 SP - 298 EP - 326 VL - 16 IS - 2 PB - EDP-Sciences UR - https://www.numdam.org/articles/10.1051/cocv:2008071/ DO - 10.1051/cocv:2008071 LA - en ID - COCV_2010__16_2_298_0 ER -
%0 Journal Article %A Ervedoza, Sylvain %T Observability properties of a semi-discrete 1d wave equation derived from a mixed finite element method on nonuniform meshes %J ESAIM: Control, Optimisation and Calculus of Variations %D 2010 %P 298-326 %V 16 %N 2 %I EDP-Sciences %U https://www.numdam.org/articles/10.1051/cocv:2008071/ %R 10.1051/cocv:2008071 %G en %F COCV_2010__16_2_298_0
Ervedoza, Sylvain. Observability properties of a semi-discrete 1d wave equation derived from a mixed finite element method on nonuniform meshes. ESAIM: Control, Optimisation and Calculus of Variations, Tome 16 (2010) no. 2, pp. 298-326. doi : 10.1051/cocv:2008071. https://www.numdam.org/articles/10.1051/cocv:2008071/
[1] Exponentially stable approximations of weakly damped wave equations, in Estimation and control of distributed parameter systems (Vorau, 1990), Internat. Ser. Numer. Math. 100, Birkhäuser, Basel (1991) 1-33. | Zbl
, and ,[2] A perfectly matched layer for the absorption of electromagnetic waves. J. Comput. Phys. 114 (1994) 185-200. | Zbl
,[3] Spectral properties of distance matrices. J. Phys. A 36 (2003) 3595-3616. | Zbl
, and ,[4] Numerical methods for Hamiltonian PDEs. J. Phys. A 39 (2006) 5287-5320. | Zbl
and ,[5] Boundary controllability of a linear semi-discrete 1-d wave equation derived from a mixed finite element method. Numer. Math. 102 (2006) 413-462. | Zbl
and ,[6] Numerical approximation of the boundary control for the wave equation with mixed finite elements in a square. IMA J. Numer. Anal. 28 (2008) 186-214. | Zbl
, and ,[7] A priori estimates for mixed finite element methods for the wave equations. Comput. Methods Appl. Mech. Engrg. 82 (1990) 205-222. | Zbl
, and ,[8] The rate at which energy decays in a damped string. Comm. Partial Differ. Equ. 19 (1994) 213-243. | Zbl
and ,[9] The rate at which energy decays in a string damped at one end. Indiana Univ. Math. J. 44 (1995) 545-573. | Zbl
and ,[10] Perfectly matched layers in 1-d: Energy decay for continuous and semi-discrete waves. Numer. Math. 109 (2008) 597-634. | Zbl
and ,[11] Uniformly exponentially stable approximations for a class of damped systems. J. Math. Pures Appl. (to appear). | Zbl
and ,[12] On the observability of time-discrete conservative linear systems. J. Funct. Anal. 254 (2008) 3037-3078. | Zbl
, and ,[13] Linear PDEs and numerical methods that preserve a multisymplectic conservation law. SIAM J. Sci. Comput. 28 (2006) 260-277 (electronic). | Zbl
, and ,[14] Ensuring well-posedness by analogy: Stokes problem and boundary control for the wave equation. J. Comput. Phys. 103 (1992) 189-221. | Zbl
,[15] A mixed finite element formulation for the boundary controllability of the wave equation. Internat. J. Numer. Methods Engrg. 27 (1989) 623-635. | Zbl
, and ,[16] Une remarque sur la stabilisation de certains systèmes du deuxième ordre en temps. Portugal. Math. 46 (1989) 245-258. | Zbl
,[17] Boundary observability for the space semi discretizations of the 1-d wave equation. Math. Model. Num. Ann. 33 (1999) 407-438. | Numdam | Zbl
and ,[18] Some trigonometrical inequalities with applications to the theory of series. Math. Z. 41 (1936) 367-379. | Zbl
,[19] Uniform controllability of semidiscrete approximations of parabolic control systems. Systems Control Lett. 55 (2006) 597-609. | Zbl
and ,[20] Équations des ondes amorties, in Séminaire sur les Équations aux Dérivées Partielles, 1993-1994, École Polytechnique, France (1994). | Zbl
,[21] Contrôlabilité exacte, Perturbations et Stabilisation de Systèmes Distribués, Tome 1 : Contrôlabilité exacte, RMA 8. Masson (1988). | Zbl
,[22] The effect of group velocity in the numerical analysis of control problems for the wave equation, in Mathematical and numerical aspects of wave propagation - WAVES 2003, Springer, Berlin (2003) 195-200. | Zbl
,[23] A uniformly controllable and implicit scheme for the 1-D wave equation. ESAIM: M2AN 39 (2005) 377-418. | Numdam | Zbl
,[24] Convergence of a multigrid method for the controllability of a 1-d wave equation. C. R. Math. Acad. Sci. Paris 338 (2004) 413-418. | Zbl
and ,[25] Wavelet filtering for exact controllability of the wave equation. SIAM J. Sci. Comput. 28 (2006) 1851-1885 (electronic). | Zbl
, and ,[26] Uniformly exponentially stable approximations for a class of second order evolution equations - application to LQR problems. ESAIM: COCV 13 (2007) 503-527. | Numdam | Zbl
, and ,[27] Uniform exponential long time decay for the space semi-discretization of a locally damped wave equation via an artificial numerical viscosity. Numer. Math. 95 (2003) 563-598. | Zbl
and ,[28] Uniform boundary stabilization of the finite difference space discretization of the 1-d wave equation. Adv. Comput. Math. 26 (2007) 337-365. | Zbl
and ,[29] Group velocity in finite difference schemes. SIAM Rev. 24 (1982) 113-136. | Zbl
,[30] An introduction to nonharmonic Fourier series. Academic Press Inc., San Diego, CA, first edition (2001). | Zbl
,[31] Boundary observability for the finite-difference space semi-discretizations of the 2-D wave equation in the square. J. Math. Pures Appl. 78 (1999) 523-563. | Zbl
,[32] Propagation, observation, and control of waves approximated by finite difference methods. SIAM Rev. 47 (2005) 197-243 (electronic). | Zbl
,- Gaussian Beam Ansatz for Finite Difference Wave Equations, Foundations of Computational Mathematics, Volume 25 (2025) no. 1, p. 1 | DOI:10.1007/s10208-023-09632-9
- An application of moment method to uniform boundary controllability property of a semidiscrete 1-d wave equation with a lower rate vanishing viscosity, Journal of Differential Equations, Volume 389 (2024), p. 1 | DOI:10.1016/j.jde.2024.01.015
- Uniform boundary stabilization of a high-order finite element space discretization of the 1-d wave equation, Numerische Mathematik, Volume 156 (2024) no. 6, p. 2069 | DOI:10.1007/s00211-024-01440-9
- A note on an algorithm studying the uniform controllability of a class of semidiscrete hyperbolic problems, Annals of the University of Craiova Mathematics and Computer Science Series, Volume 50 (2023) no. 1, p. 224 | DOI:10.52846/ami.v50i1.1730
- Exponential stability of a general slope limiter scheme for scalar conservation laws subject to a dissipative boundary condition, Mathematics of Control, Signals, and Systems, Volume 34 (2022) no. 1, p. 37 | DOI:10.1007/s00498-021-00301-2
- Uniform exponential stabilization and the state reconstruction of the wave equation with viscosity, SCIENTIA SINICA Mathematica, Volume 52 (2022) no. 7, p. 845 | DOI:10.1360/ssm-2020-0292
- , 2020 7th International Conference on Information, Cybernetics, and Computational Social Systems (ICCSS) (2020), p. 511 | DOI:10.1109/iccss52145.2020.9336909
- Optimal approximation of internal controls for a wave-type problem with fractional Laplacian using finite-difference method, Mathematical Models and Methods in Applied Sciences, Volume 30 (2020) no. 03, p. 439 | DOI:10.1142/s0218202520500116
- Uniform Exponential Stability of Galerkin Approximations for a Damped Wave System, Advanced Finite Element Methods with Applications, Volume 128 (2019), p. 107 | DOI:10.1007/978-3-030-14244-5_6
- Numerical meshes ensuring uniform observability of one-dimensional waves: construction and analysis, IMA Journal of Numerical Analysis, Volume 36 (2016) no. 2, p. 503 | DOI:10.1093/imanum/drv026
- Propagation of 1D Waves in Regular Discrete Heterogeneous Media: A Wigner Measure Approach, Foundations of Computational Mathematics, Volume 15 (2015) no. 6, p. 1571 | DOI:10.1007/s10208-014-9232-x
- Numerical approximation schemes for multi-dimensional wave equations in asymmetric spaces, Mathematics of Computation, Volume 84 (2014) no. 291, p. 119 | DOI:10.1090/s0025-5718-2014-02887-1
- Boundary Stabilization of Numerical Approximations of the 1-D Variable Coefficients Wave Equation: A Numerical Viscosity Approach, Optimization with PDE Constraints, Volume 101 (2014), p. 285 | DOI:10.1007/978-3-319-08025-3_9
- Preliminaries, Symmetric Discontinuous Galerkin Methods for 1-D Waves (2014), p. 1 | DOI:10.1007/978-1-4614-5811-1_1
- Discontinuous Galerkin Approximations and Main Results, Symmetric Discontinuous Galerkin Methods for 1-D Waves (2014), p. 15 | DOI:10.1007/978-1-4614-5811-1_2
- Bibliographical Notes, Symmetric Discontinuous Galerkin Methods for 1-D Waves (2014), p. 27 | DOI:10.1007/978-1-4614-5811-1_3
- Fourier Analysis of the Discontinuous Galerkin Methods, Symmetric Discontinuous Galerkin Methods for 1-D Waves (2014), p. 31 | DOI:10.1007/978-1-4614-5811-1_4
- On the Lack of Uniform Observability for Discontinuous Galerkin Approximations of Waves, Symmetric Discontinuous Galerkin Methods for 1-D Waves (2014), p. 41 | DOI:10.1007/978-1-4614-5811-1_5
- Filtering Mechanisms, Symmetric Discontinuous Galerkin Methods for 1-D Waves (2014), p. 51 | DOI:10.1007/978-1-4614-5811-1_6
- Extensions to Other Numerical Approximation Schemes, Symmetric Discontinuous Galerkin Methods for 1-D Waves (2014), p. 83 | DOI:10.1007/978-1-4614-5811-1_7
- Comments and Open Problems, Symmetric Discontinuous Galerkin Methods for 1-D Waves (2014), p. 93 | DOI:10.1007/978-1-4614-5811-1_8
- Numerical Approximation of Exact Controls for Waves, Numerical Approximation of Exact Controls for Waves (2013), p. 1 | DOI:10.1007/978-1-4614-5808-1_1
- Convergence of an Inverse Problem for a 1-D Discrete Wave Equation, SIAM Journal on Control and Optimization, Volume 51 (2013) no. 1, p. 556 | DOI:10.1137/110838042
- The Wave Equation: Control and Numerics, Control of Partial Differential Equations, Volume 2048 (2012), p. 245 | DOI:10.1007/978-3-642-27893-8_5
- Resolvent estimates in controllability theory and applications to the discrete wave equation, Journées équations aux dérivées partielles (2011), p. 1 | DOI:10.5802/jedp.55
Cité par 25 documents. Sources : Crossref