Given the probability measure
Mots-clés : location problem, facility location, Fermat-Weber problem,
@article{COCV_2009__15_3_509_0, author = {Brancolini, Alessio and Buttazzo, Giuseppe and Santambrogio, Filippo and Stepanov, Eugene}, title = {Long-term planning versus short-term planning in the asymptotical location problem}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {509--524}, publisher = {EDP-Sciences}, volume = {15}, number = {3}, year = {2009}, doi = {10.1051/cocv:2008034}, mrnumber = {2542570}, zbl = {1169.90386}, language = {en}, url = {https://www.numdam.org/articles/10.1051/cocv:2008034/} }
TY - JOUR AU - Brancolini, Alessio AU - Buttazzo, Giuseppe AU - Santambrogio, Filippo AU - Stepanov, Eugene TI - Long-term planning versus short-term planning in the asymptotical location problem JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2009 SP - 509 EP - 524 VL - 15 IS - 3 PB - EDP-Sciences UR - https://www.numdam.org/articles/10.1051/cocv:2008034/ DO - 10.1051/cocv:2008034 LA - en ID - COCV_2009__15_3_509_0 ER -
%0 Journal Article %A Brancolini, Alessio %A Buttazzo, Giuseppe %A Santambrogio, Filippo %A Stepanov, Eugene %T Long-term planning versus short-term planning in the asymptotical location problem %J ESAIM: Control, Optimisation and Calculus of Variations %D 2009 %P 509-524 %V 15 %N 3 %I EDP-Sciences %U https://www.numdam.org/articles/10.1051/cocv:2008034/ %R 10.1051/cocv:2008034 %G en %F COCV_2009__15_3_509_0
Brancolini, Alessio; Buttazzo, Giuseppe; Santambrogio, Filippo; Stepanov, Eugene. Long-term planning versus short-term planning in the asymptotical location problem. ESAIM: Control, Optimisation and Calculus of Variations, Tome 15 (2009) no. 3, pp. 509-524. doi : 10.1051/cocv:2008034. https://www.numdam.org/articles/10.1051/cocv:2008034/
[1] Minimizing movements. Rend. Accad. Naz. Sci. XL Mem. Mat. Appl. 19 (1995) 191-246. | MR | Zbl
,[2] Gradient flows in metric spaces and in the spaces of probability measures, Lectures in Mathematics. ETH Zurich, Birkhäuser (2005). | MR | Zbl
, and ,[3] Asymptotique d'un problème de positionnement optimal. C. R. Acad. Sci. Paris Ser. I 335 (2002) 1-6. | MR | Zbl
, and ,[4] Optimal networks for mass transportation problems. ESAIM: COCV 11 (2005) 88-101. | Numdam | MR | Zbl
and ,[5] Optimal transportation networks as free Dirichlet regions for the Monge-Kantorovich problem. Ann. Scuola Norm. Sup. Cl. Sci. II (2003) 631-678. | Numdam | MR | Zbl
and ,[6] Minimization problems for average distance functionals, in Calculus of Variations: Topics from the Mathematical Heritage of Ennio De Giorgi, D. Pallara Ed., Quaderni di Matematica 14, Seconda Universita di Napoli (2004) 47-83. | MR | Zbl
and ,[7] Optimal transportation problems with free Dirichlet regions, Progress in Nonlinear Differential Equations and their Applications 51. Birkhäuser (2002) 41-65. | MR | Zbl
, and ,
[8] An introduction to
[9] Lagerungen in der Ebene auf der Kugel und im Raum, Die Grundlehren der Math. Wiss. 65. Springer-Verlag, Berlin (1953). | MR | Zbl
,[10] Hexagonal economic regions solve the location problem. Amer. Math. Monthly 109 (2002) 165-172. | MR | Zbl
and ,
[11]
[12] Qualitative properties of maximum distance minimizers and average distance minimizers in
[13] Blow-up of optimal sets in the irrigation probem. J. Geom. Anal. 15 (2005) 343-362. | MR | Zbl
and ,[14] Partial geometric regularity of some optimal connected transportation networks. J. Math. Sciences (N.Y.) 132 (2006) 522-552. | MR | Zbl
,
[15] The
[16] Using Voronoi diagrams, in Facility location: a survey of applications and methods, Z. Drezner Ed., Springer Series in Operations Research, Springer Verlag (1995) 103-118.
and ,[17] Sequential location-allocation of public facilities in one- and two-dimensional space: comparison of several policies. Math. Program. Ser. B 52 (1991) 125-146. | MR | Zbl
, and ,[18] http://cvgmt.sns.it/papers/brabutsan06/.
- New approach to greedy vector quantization, Bernoulli, Volume 28 (2022) no. 1 | DOI:10.3150/21-bej1350
- On the horseshoe conjecture for maximal distance minimizers, ESAIM: Control, Optimisation and Calculus of Variations, Volume 24 (2018) no. 3, p. 1015 | DOI:10.1051/cocv/2017025
- A Gradient Flow Perspective on the Quantization Problem, PDE Models for Multi-Agent Phenomena, Volume 28 (2018), p. 145 | DOI:10.1007/978-3-030-01947-1_7
- Asymptotic quantization for probability measures on Riemannian manifolds, ESAIM: Control, Optimisation and Calculus of Variations, Volume 22 (2016) no. 3, p. 770 | DOI:10.1051/cocv/2015025
- Greedy vector quantization, Journal of Approximation Theory, Volume 198 (2015), p. 111 | DOI:10.1016/j.jat.2015.05.005
- Optimal location problems with routing cost, Discrete Continuous Dynamical Systems - A, Volume 34 (2014) no. 4, p. 1301 | DOI:10.3934/dcds.2014.34.1301
Cité par 6 documents. Sources : Crossref