By means of a direct and constructive method based on the theory of semi-global
Mots-clés : exact boundary observability, exact boundary controllability, semi-global
@article{COCV_2008__14_4_759_0, author = {Tatsien Li Daqian Li}, title = {Exact boundary observability for quasilinear hyperbolic systems}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {759--766}, publisher = {EDP-Sciences}, volume = {14}, number = {4}, year = {2008}, doi = {10.1051/cocv:2008007}, mrnumber = {2451794}, zbl = {1155.93015}, language = {en}, url = {https://www.numdam.org/articles/10.1051/cocv:2008007/} }
TY - JOUR AU - Tatsien Li Daqian Li TI - Exact boundary observability for quasilinear hyperbolic systems JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2008 SP - 759 EP - 766 VL - 14 IS - 4 PB - EDP-Sciences UR - https://www.numdam.org/articles/10.1051/cocv:2008007/ DO - 10.1051/cocv:2008007 LA - en ID - COCV_2008__14_4_759_0 ER -
%0 Journal Article %A Tatsien Li Daqian Li %T Exact boundary observability for quasilinear hyperbolic systems %J ESAIM: Control, Optimisation and Calculus of Variations %D 2008 %P 759-766 %V 14 %N 4 %I EDP-Sciences %U https://www.numdam.org/articles/10.1051/cocv:2008007/ %R 10.1051/cocv:2008007 %G en %F COCV_2008__14_4_759_0
Tatsien Li Daqian Li. Exact boundary observability for quasilinear hyperbolic systems. ESAIM: Control, Optimisation and Calculus of Variations, Tome 14 (2008) no. 4, pp. 759-766. doi : 10.1051/cocv:2008007. https://www.numdam.org/articles/10.1051/cocv:2008007/
[1] Observabilité, contrôlabilité et stabilisation frontière du système d'élasticité linéaire. C. R. Acad. Sci. Paris Sér. I Math. 324 (1997) 519-524. | MR | Zbl
and ,[2] Sharp efficient conditions for the observation, control and stabilization of wave from the boundary. SIAM J. Control Optim. 30 (1992) 1024-1065. | MR | Zbl
, and ,[3] Inverse/observability estimates for second-order hyperbolic equations with variable coefficients. J. Math. Anal. Appl. 235 (1999) 13-57. | MR | Zbl
, and ,
[4] Semi-global
[5] Local exact boundary controllability for a class of quasilinear hyperbolic systems. Chin. Ann. Math. 23B (2002) 209-218. | MR | Zbl
and ,[6] Exact boundary controllability for quasilinear hyperbolic systems. SIAM J. Control Optim. 41 (2003) 1748-1755. | MR | Zbl
and ,[7] Contrôlabilité Exacte, Perturbations et Stabilisation de Systèmes Distribués, Tome I: Contrôlabilité Exacte, RMA 8. Masson (1988). | Zbl
,[8] Controllability and stabilizability theory for linear partial differential equations: recent progress and open questions. SIAM Rev. 20 (1978) 639-739. | MR | Zbl
,[9] Identification problem for a one-dimensional vibrating system. Math. Meth. Appl. Sci. 28 (2005) 2037-2059. | MR | Zbl
and ,[10] Exact controllability for nonautonomous first order quasilinear hyperbolic systems. Chin. Ann. Math. 27B (2006) 643-656. | MR
,[11] On the observability inequalities for exact controllability of wave equations with variable coefficients. SIAM J. Control Optim. 37 (1999) 1568-1599. | MR | Zbl
,
[12] Boundary observability for the space-discretization of the 1-
[13] Boundary observability for the finite-difference space semi-discretizations of the 2-
Cité par Sources :