New
Mots-clés : semicontinuity, relaxation, BV functions, capacity
@article{COCV_2008__14_3_456_0, author = {Fusco, Nicola and Cicco, Virginia De and Amar, Micol}, title = {Lower semicontinuity and relaxation results in {BV} for integral functionals with {BV} integrands}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {456--477}, publisher = {EDP-Sciences}, volume = {14}, number = {3}, year = {2008}, doi = {10.1051/cocv:2007061}, mrnumber = {2434061}, zbl = {1149.49016}, language = {en}, url = {https://www.numdam.org/articles/10.1051/cocv:2007061/} }
TY - JOUR AU - Fusco, Nicola AU - Cicco, Virginia De AU - Amar, Micol TI - Lower semicontinuity and relaxation results in BV for integral functionals with BV integrands JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2008 SP - 456 EP - 477 VL - 14 IS - 3 PB - EDP-Sciences UR - https://www.numdam.org/articles/10.1051/cocv:2007061/ DO - 10.1051/cocv:2007061 LA - en ID - COCV_2008__14_3_456_0 ER -
%0 Journal Article %A Fusco, Nicola %A Cicco, Virginia De %A Amar, Micol %T Lower semicontinuity and relaxation results in BV for integral functionals with BV integrands %J ESAIM: Control, Optimisation and Calculus of Variations %D 2008 %P 456-477 %V 14 %N 3 %I EDP-Sciences %U https://www.numdam.org/articles/10.1051/cocv:2007061/ %R 10.1051/cocv:2007061 %G en %F COCV_2008__14_3_456_0
Fusco, Nicola; Cicco, Virginia De; Amar, Micol. Lower semicontinuity and relaxation results in BV for integral functionals with BV integrands. ESAIM: Control, Optimisation and Calculus of Variations, Tome 14 (2008) no. 3, pp. 456-477. doi : 10.1051/cocv:2007061. https://www.numdam.org/articles/10.1051/cocv:2007061/
[1] A notion of total variation depending on a metric with discontinuous coefficients. Ann. Inst. Henri Poincaré 11 (1994) 91-133. | Numdam | MR | Zbl
, and ,
[2] Relaxation in
[3] A relaxation result in BV for integral functionals with discontinuous integrands. ESAIM: COCV 13 (2007) 396-412. | Numdam | MR
, and ,[4] Functions of bounded variation and free discontinuity problems. Oxford University Press, New York (2000). | MR | Zbl
, and ,[5] Dirichlet problem for demi-coercive functionals. Nonlinear Anal. 10 (1986) 603-613. | MR | Zbl
, and ,[6] Integral representation of convex functionals on a space of measures. J. Funct. Anal. 80 (1988) 398-420. | MR | Zbl
and ,[7] A global method for relaxation. Arch. Rat. Mech. Anal. 145 (1998) 51-98. | MR | Zbl
, and ,[8] Semicontinuity, Relaxation and Integral Representation Problems in the Calculus of Variations. Pitman Res. Notes in Math., Longman, Harlow (1989). | Zbl
,[9] Relaxation of the non-parametric Plateau problem with an obstacle. J. Math. Pures Appl. 67 (1988) 359-396. | MR | Zbl
, , and ,
[10] Integral representation on
[11] On the integral representation of certain local functionals. Ricerche di Matematica 32 (1983) 85-113. | MR | Zbl
,
[12] An Introduction to
[13] A chain rule in
[14] On
[15] A chain rule formula in
[16] Su un tipo di convergenza variazionale. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 58 (1975) 842-850. | MR | Zbl
and ,[17] Su un tipo di convergenza variazionale. Rend. Sem. Mat. Brescia 3 (1979) 63-101.
and ,
[18] The Lebesgue set of a function whose distribution derivatives are
[19] On lower semicontinuity and relaxation. Proc. Royal Soc. Edinb., Sect. A, Math. 131 (2001) 519-565. | MR | Zbl
and ,
[20]
[21]
[22] A remark on the
[23] A remark on Serrin's Theorem. NoDEA Nonlinear Differential Equations Appl. 13 (2006) 425-433. | MR
, and ,[24] The common root of the geometric conditions in Serrin's semicontinuity theorem. Ann. Mat. Pura Appl. 184 (2005) 95-114. | MR
and ,
[25] On some sharp conditions for lower semicontinuity in
[26] On the relaxation on BV of certain non coercive integral functionals. J. Convex Anal. 10 (2003) 477-489. | MR | Zbl
,[27] Superfici cartesiane generalizzate ed insiemi di perimetro localmente finito sui prodotti cartesiani. Ann. Scuola Norm. Sup. Pisa 18 (1964) 515-542. | Numdam | MR | Zbl
,[28] Weak convergence of completely additive vector functions on a set. Siberian Math. J. 9 (1968) 1039-1045. | Zbl
,Cité par Sources :