The object of this paper is to prove existence and regularity results for non-linear elliptic differential-functional equations of the form
Mots-clés : non-linear elliptic PDE's, Lipschitz continuous solutions, lower bounded slope condition
@article{COCV_2007__13_4_707_0, author = {Bousquet, Pierre}, title = {Local {Lipschitz} continuity of solutions of non-linear elliptic differential-functional equations}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {707--716}, publisher = {EDP-Sciences}, volume = {13}, number = {4}, year = {2007}, doi = {10.1051/cocv:2007035}, mrnumber = {2351399}, language = {en}, url = {https://www.numdam.org/articles/10.1051/cocv:2007035/} }
TY - JOUR AU - Bousquet, Pierre TI - Local Lipschitz continuity of solutions of non-linear elliptic differential-functional equations JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2007 SP - 707 EP - 716 VL - 13 IS - 4 PB - EDP-Sciences UR - https://www.numdam.org/articles/10.1051/cocv:2007035/ DO - 10.1051/cocv:2007035 LA - en ID - COCV_2007__13_4_707_0 ER -
%0 Journal Article %A Bousquet, Pierre %T Local Lipschitz continuity of solutions of non-linear elliptic differential-functional equations %J ESAIM: Control, Optimisation and Calculus of Variations %D 2007 %P 707-716 %V 13 %N 4 %I EDP-Sciences %U https://www.numdam.org/articles/10.1051/cocv:2007035/ %R 10.1051/cocv:2007035 %G en %F COCV_2007__13_4_707_0
Bousquet, Pierre. Local Lipschitz continuity of solutions of non-linear elliptic differential-functional equations. ESAIM: Control, Optimisation and Calculus of Variations, Tome 13 (2007) no. 4, pp. 707-716. doi : 10.1051/cocv:2007035. https://www.numdam.org/articles/10.1051/cocv:2007035/
[1] The lower bounded slope condition. J. Convex Anal. 14 (2007) 119-136. | Zbl
,[2] Local Lipschitz continuity of solutions to a problem in the calculus of variations. J. Differ. Eq. (to appear). | MR | Zbl
and ,[3] Continuity of solutions to a basic problem in the calculus of variations. Ann. Sc. Norm. Super. Pisa Cl. Sci. 4 (2005) 511-530. | Numdam | Zbl
,[4] Elliptic partial differential equations of second order. Classics in Mathematics, Springer-Verlag, Berlin (2001). Reprint of the 1998 edition. | MR | Zbl
and ,[5] On the bounded slope condition. Pacific J. Math. 18 (1966) 495-511. | Zbl
,[6] On some non-linear elliptic differential-functional equations. Acta Math. 115 (1966) 271-310. | Zbl
and ,[7] The quasilinear Dirichlet problem with decreased regularity at the boundary. Comm. Partial Differential Equations 6 (1981) 437-497. | Zbl
,[8] The Dirichlet problem for quasilinear elliptic equations with Hölder continuous boundary values. Arch. Rational Mech. Anal. 79 (1982) 305-323. | Zbl
,[9] The Dirichlet problem for quasilinear elliptic equations with continuously differentiable boundary data. Comm. Partial Differential Equations 11 (1986) 167-229. | Zbl
,
[10] Un teorema di esistenza e unicità per il problema dell’area minima in
Cité par Sources :