We consider a distributed system in which the state
Mots-clés : heat equation, optimal control, controllability, Carleman inequalities, sentinels
@article{COCV_2007__13_4_623_0, author = {Nakoulima, Ousseynou}, title = {Optimal control for distributed systems subject to null-controllability. {Application} to discriminating sentinels}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {623--638}, publisher = {EDP-Sciences}, volume = {13}, number = {4}, year = {2007}, doi = {10.1051/cocv:2007038}, mrnumber = {2351394}, zbl = {1130.49301}, language = {en}, url = {https://www.numdam.org/articles/10.1051/cocv:2007038/} }
TY - JOUR AU - Nakoulima, Ousseynou TI - Optimal control for distributed systems subject to null-controllability. Application to discriminating sentinels JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2007 SP - 623 EP - 638 VL - 13 IS - 4 PB - EDP-Sciences UR - https://www.numdam.org/articles/10.1051/cocv:2007038/ DO - 10.1051/cocv:2007038 LA - en ID - COCV_2007__13_4_623_0 ER -
%0 Journal Article %A Nakoulima, Ousseynou %T Optimal control for distributed systems subject to null-controllability. Application to discriminating sentinels %J ESAIM: Control, Optimisation and Calculus of Variations %D 2007 %P 623-638 %V 13 %N 4 %I EDP-Sciences %U https://www.numdam.org/articles/10.1051/cocv:2007038/ %R 10.1051/cocv:2007038 %G en %F COCV_2007__13_4_623_0
Nakoulima, Ousseynou. Optimal control for distributed systems subject to null-controllability. Application to discriminating sentinels. ESAIM: Control, Optimisation and Calculus of Variations, Tome 13 (2007) no. 4, pp. 623-638. doi : 10.1051/cocv:2007038. https://www.numdam.org/articles/10.1051/cocv:2007038/
[1] Exact controllability of the superlinear heat equation. Appl. Math. Optim. 42 (2000) 73-89. | Zbl
,[2] Introduction aux Problèmes d'Evolution Semi-Linéaires, Collection Mathématiques et Applications de la SMAI. Éditions Ellipses, Paris (1991). | Zbl
and ,[3] Sur le contrôle de quelques problèmes singuliers associés à l'équation de la chaleur. Ph.D. thesis, Université des Antilles et de la Guyane (2004).
,[4] Low-regret control for singular distributed systems: The backwards heat ill-posed problem. Appl. Math. Lett. 17 (2004) 549-552. | Zbl
, and ,[5] Exact controllability to trajectories for semilinear heat equations with discontinuous diffusion coefficients. ESAIM: COCV 8 (2002) 621-661. | Numdam | Zbl
, and ,[6] Approximate controllability of the semilinear heat equation. Proc. Royal Soc. Edinburg 125A (1995) 31-61. | Zbl
, and ,[7] Nul controllability of the semilinear heat equation. ESAIM: COCV 2 (1997) 87-103. | Numdam | Zbl
,[8] Global Carleman inequalities for parabolic systems and applications to controllability. SIAM J. Control Optim. 45 (2006) 1395-1446. | Zbl
and ,[9] The cost of approximate controllability for heat equations: the linear case. Adv. Differ. Equ. 5 (2000) 465-514. | Zbl
and ,[10] Controllability of evolution equations, Lecture Notes. Research Institute of Mathematics, Seoul National University, Korea (1996). | MR | Zbl
and ,[11] Controllability of parabolic equations. Sbornik Math. 186 (1995) 879-900. | Zbl
,[12] Contrôle exacte de l'équation de la chaleur. Comm. Part. Diff. Eq. 20 (1995) 335-356. | Zbl
and ,[13] Contrôle optimal de systèmes gouvernés par des équations aux dérivées partielles. Dunod, Gauthier-Villars, Paris (1968). | MR | Zbl
,[14] Sentinelles pour les systèmes distribués à données incomplètes. Masson, Paris (1992). | MR | Zbl
,[15] Problèmes aux limites non homogènes et applications. Vols. 1 et 2, Dunod, Paris (1988). | Zbl
and ,[16] Contrôlabilité à zéro avec contraintes sur le contrôle. C. R. Acad. Sci. Paris Ser. I Math. 339 (2004) 405-410. | Zbl
,[17] A unified boundary controllability theory for hyperbolic and parabolic partial differential equations. Stud. App. Math. 52 (1973) 189-212. | Zbl
,[18] Exact boundary controllability for the semilinear wave equation. Non linear Partial Diff. Equ. Appl. 10 (1989) 357-391. | Zbl
,[19] Finite dimensional null controllability for the semilinear heat equation. J. Math. Pures Appl. 76 (1997) 237-264. | Zbl
,[20] Zbl
, controllability of partial differential equations and its semi-discrete approximations. Discrete Continuous Dynam. Syst. 8 (2002) 469-513. |Cité par Sources :