In this paper we prove that every weak and strong local minimizer
Mots-clés : nonlinear elasticity, partial regularity, polyconvexity
@article{COCV_2007__13_1_120_0, author = {Carozza, Menita and Passarelli Di Napoli, Antonia}, title = {Model problems from nonlinear elasticity : partial regularity results}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {120--134}, publisher = {EDP-Sciences}, volume = {13}, number = {1}, year = {2007}, doi = {10.1051/cocv:2007007}, mrnumber = {2282105}, language = {en}, url = {https://www.numdam.org/articles/10.1051/cocv:2007007/} }
TY - JOUR AU - Carozza, Menita AU - Passarelli Di Napoli, Antonia TI - Model problems from nonlinear elasticity : partial regularity results JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2007 SP - 120 EP - 134 VL - 13 IS - 1 PB - EDP-Sciences UR - https://www.numdam.org/articles/10.1051/cocv:2007007/ DO - 10.1051/cocv:2007007 LA - en ID - COCV_2007__13_1_120_0 ER -
%0 Journal Article %A Carozza, Menita %A Passarelli Di Napoli, Antonia %T Model problems from nonlinear elasticity : partial regularity results %J ESAIM: Control, Optimisation and Calculus of Variations %D 2007 %P 120-134 %V 13 %N 1 %I EDP-Sciences %U https://www.numdam.org/articles/10.1051/cocv:2007007/ %R 10.1051/cocv:2007007 %G en %F COCV_2007__13_1_120_0
Carozza, Menita; Passarelli Di Napoli, Antonia. Model problems from nonlinear elasticity : partial regularity results. ESAIM: Control, Optimisation and Calculus of Variations, Tome 13 (2007) no. 1, pp. 120-134. doi : 10.1051/cocv:2007007. https://www.numdam.org/articles/10.1051/cocv:2007007/
[1] A regularity theorem for minimizers of quasiconvex integrals. Arch. Rational Mech. Anal. 99 (1987) 261-281. | Zbl
and ,
[2] Regularity for minimizers of non-quadratic functionals: the case
[3] Convexity conditions and existence theorems in nonlinear elasticity. Arch. Rational Mech. Anal. 63 (1977) 337-403. | Zbl
,[4] Some open problem in elasticity, in Geometry, Mechanics and dynamics, Springer, New York (2002) 3-59. | Zbl
,[5] Partial regularity of minimizers of quasiconvex integrals with subquadratic growth. Annali Mat. Pura Appl. 175 (1998) 141-164. | Zbl
, and ,
[6] A regularity theorem for minimizers of quasiconvex integrals the case
[7] Partial regularity of local minimizers of quasiconvex integrals with sub-quadratic growth. Proc. Roy. Soc Edinburgh 133A (2003) 1249-1262. | Zbl
and ,[8] Direct methods in the calculus of variations. Appl. Math. Sci. 78, Springer Verlag (1989). | MR | Zbl
,[9] Quasiconvexity and partial regularity in the calculus of variations. Arch. Rational Mech. Anal. 95 (1986) 227-252. | Zbl
,[10] Partial regularity in problems motivated by nonlinear elasticity. SIAM J. Math. 22 (1991) 1516-1551. | Zbl
and ,[11] Partial regularity and everywhere continuity for a model problem from nonlinear elasticity. J. Australian Math. Soc. 57 (1994) 149-157. | Zbl
and ,[12] Multiple integrals in the calculus of variations and nonlinear elliptic systems. Ann. Math. Stud. 105 Princeton Univ. Press (1983). | MR | Zbl
,[13] Partial regularity of minimizers of quasiconvex integrals. Ann. Inst. H. Poincaré, Analyse non linéaire 3 (1986) 185-208. | Numdam | Zbl
and ,[14] Metodi diretti in calcolo delle variazioni. U.M.I. (1994).
,[15] Partial regularity of strong local minimizers in the multidimensional calculus of variations. Arch. Rational Mech. Anal. 170 (2003) 63-89. | Zbl
and ,[16] A regularity result for a class of polyconvex functionals. Ricerche di Matematica XLVIII (1999) 379-393. | Zbl
,Cité par Sources :