We consider the problem of placing a Dirichlet region made by
Mots-clés : compliance, optimal location, shape optimization,
@article{COCV_2006__12_4_752_0, author = {Buttazzo, Giuseppe and Santambrogio, Filippo and Varchon, Nicolas}, title = {Asymptotics of an optimal compliance-location problem}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {752--769}, publisher = {EDP-Sciences}, volume = {12}, number = {4}, year = {2006}, doi = {10.1051/cocv:2006020}, mrnumber = {2266816}, zbl = {1114.49016}, language = {en}, url = {https://www.numdam.org/articles/10.1051/cocv:2006020/} }
TY - JOUR AU - Buttazzo, Giuseppe AU - Santambrogio, Filippo AU - Varchon, Nicolas TI - Asymptotics of an optimal compliance-location problem JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2006 SP - 752 EP - 769 VL - 12 IS - 4 PB - EDP-Sciences UR - https://www.numdam.org/articles/10.1051/cocv:2006020/ DO - 10.1051/cocv:2006020 LA - en ID - COCV_2006__12_4_752_0 ER -
%0 Journal Article %A Buttazzo, Giuseppe %A Santambrogio, Filippo %A Varchon, Nicolas %T Asymptotics of an optimal compliance-location problem %J ESAIM: Control, Optimisation and Calculus of Variations %D 2006 %P 752-769 %V 12 %N 4 %I EDP-Sciences %U https://www.numdam.org/articles/10.1051/cocv:2006020/ %R 10.1051/cocv:2006020 %G en %F COCV_2006__12_4_752_0
Buttazzo, Giuseppe; Santambrogio, Filippo; Varchon, Nicolas. Asymptotics of an optimal compliance-location problem. ESAIM: Control, Optimisation and Calculus of Variations, Tome 12 (2006) no. 4, pp. 752-769. doi : 10.1051/cocv:2006020. https://www.numdam.org/articles/10.1051/cocv:2006020/
[1] Shape optimization by the homogenization method. Springer-Verlag, New York (2002). | MR | Zbl
,[2] Topology Optimization. Theory, Methods, and Applications. Springer-Verlag, New York (2003). | MR | Zbl
and ,[3] Integral representation of nonconvex functionals defined on measures. Ann. Inst. H. Poincaré Anal. Non Linéaire 9 (1992) 101-117. | EuDML | Numdam | Zbl
and ,[4] Asymptotique d'un problème de positionnement optimal. C.R. Acad. Sci. Paris Ser. I 335 (2002) 1-6. | Zbl
, and ,[5] Variational Methods in Shape Optimization Problems. Birkäuser, Boston, Progress in Nonlinear Differential Equations and their Applications 65 (2005). | MR | Zbl
and ,[6] Shape optimization for Dirichlet problems: relaxed solutions and optimality conditions. Bull. Amer. Math. Soc. 23 (1990) 531-535. | Zbl
and ,[7] Shape optimization for Dirichlet problems: relaxed formulation and optimality conditions. Appl. Math. Optim. 23 (1991) 17-49. | Zbl
and ,[8] An existence result for a class of shape optimization problems. Arch. Rational Mech. Anal. 122 (1993) 183-195. | Zbl
and ,[9] On the relaxed formulation of Some Shape Optimization Problems. Adv. Math. Sci. Appl. 7 (1997) 1-24. | Zbl
, , and ,[10] Un terme étrange venu d'ailleurs. Nonlinear partial differential equations and their applications, Collège de France Seminar, Vol. II (1982), 98-138 and Vol. III (1982) 154-178. | Zbl
and ,
[11] An Introduction to
[12] Lagerungen in der Ebene auf der Kugel und im Raum, Die Grundlehren der Math. Wiss., Vol. 65, Springer-Verlag, Berlin (1953). | MR | Zbl
,[13] Variation et Optimisation de Forme. Une analyse géométrique. Springer-Verlag, Berlin, Mathématiques et Applications 48 (2005). | Zbl
and ,[14] Hexagonal Economic Regions Solve the Location Problem. Amer. Math. Monthly 109 (2002) 165-172. | Zbl
and ,
[15]
[16] Introduction to Shape Optimization. Shape sensitivity analysis. Springer-Verlag, Berlin (1992). | MR | Zbl
and ,Cité par Sources :