We propose a variational model to describe the optimal distributions of residents and services in an urban area. The functional to be minimized involves an overall transportation cost taking into account congestion effects and two aditional terms which penalize concentration of residents and dispersion of services. We study regularity properties of the minimizers and treat in details some examples.
Mots clés : continuous transportation models, traffic congestion
@article{COCV_2005__11_4_595_0, author = {Carlier, Guillaume and Santambrogio, Filippo}, title = {A variational model for urban planning with traffic congestion}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {595--613}, publisher = {EDP-Sciences}, volume = {11}, number = {4}, year = {2005}, doi = {10.1051/cocv:2005022}, mrnumber = {2167876}, zbl = {1085.49046}, language = {en}, url = {http://www.numdam.org/articles/10.1051/cocv:2005022/} }
TY - JOUR AU - Carlier, Guillaume AU - Santambrogio, Filippo TI - A variational model for urban planning with traffic congestion JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2005 SP - 595 EP - 613 VL - 11 IS - 4 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/cocv:2005022/ DO - 10.1051/cocv:2005022 LA - en ID - COCV_2005__11_4_595_0 ER -
%0 Journal Article %A Carlier, Guillaume %A Santambrogio, Filippo %T A variational model for urban planning with traffic congestion %J ESAIM: Control, Optimisation and Calculus of Variations %D 2005 %P 595-613 %V 11 %N 4 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/cocv:2005022/ %R 10.1051/cocv:2005022 %G en %F COCV_2005__11_4_595_0
Carlier, Guillaume; Santambrogio, Filippo. A variational model for urban planning with traffic congestion. ESAIM: Control, Optimisation and Calculus of Variations, Tome 11 (2005) no. 4, pp. 595-613. doi : 10.1051/cocv:2005022. http://www.numdam.org/articles/10.1051/cocv:2005022/
[1] Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions I. Comm. Pure Appl. Math. 12 (1959) 623-727. | Zbl
, and ,[2] A continuous model of transportation. Econometrica 20 (1952) 643-660. | Zbl
,[3] Spatial Economics: Density, Potential and Flow. North-Holland, Amsterdam (1985). | MR
and ,[4] Analyse Fonctionnelle. Masson Editeur, Paris (1983). | MR | Zbl
,[5] A model for the optimal planning of an urban area. Preprint available at cvgmt.sns.it (2003). To appear in SIAM J. Math. Anal. | MR | Zbl
and ,[6] Optimal transportation networks as free Dirichlet regions for the Monge-Kantorovich problem. Ann. Sc. Norm. Super. Pisa Cl. Sci. 2 (2003) 631-678. | Numdam | Zbl
and ,[7] Regularity properties for Monge transport density and for solutions of some shape optimization problem. Calc. Var. Partial Differ. Equ. 14 (2002) 249-274. | Zbl
and ,[8] Elliptic Partial Differential Equations of Second Order. Springer-Verlag, Berlin (1977). | MR | Zbl
and ,[9] A convexity principle for interacting gases. Adv. Math. 128 (1997) 153-159. | Zbl
,[10] Misure ottime per costi di trasporto e funzionali locali (in italian), Laurea Thesis, Università di Pisa, advisor: G. Buttazzo, available at www.unipi.it/etd and cvgmt.sns.it (2003).
,Cité par Sources :