On periodic motions of a two dimensional Toda type chain
ESAIM: Control, Optimisation and Calculus of Variations, Tome 11 (2005) no. 1, pp. 72-87.

In this paper we consider a chain of strings with fixed end points coupled with nearest neighbour interaction potential of exponential type, i.e.

ϕ tt i -ϕ xx i =exp(ϕ i+1 -ϕ i )-exp(ϕ i -ϕi-1)0<x<π,t,i(TC)ϕ i (0,t)=ϕ i (π,t)=0t,i.
We consider the case of “closed chains” i.e. ϕ i+N =ϕ i i and some N and look for solutions which are peirodic in time. The existence of periodic solutions for the dual problem is proved in Orlicz space setting.

DOI : 10.1051/cocv:2004033
Classification : 58E30, 37J45
Mots clés : periodic, Toda type chain
@article{COCV_2005__11_1_72_0,
     author = {Mancini, Gianni and Srikanth, P. N.},
     title = {On periodic motions of a two dimensional {Toda} type chain},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {72--87},
     publisher = {EDP-Sciences},
     volume = {11},
     number = {1},
     year = {2005},
     doi = {10.1051/cocv:2004033},
     mrnumber = {2110614},
     zbl = {1096.37049},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/cocv:2004033/}
}
TY  - JOUR
AU  - Mancini, Gianni
AU  - Srikanth, P. N.
TI  - On periodic motions of a two dimensional Toda type chain
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2005
SP  - 72
EP  - 87
VL  - 11
IS  - 1
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/cocv:2004033/
DO  - 10.1051/cocv:2004033
LA  - en
ID  - COCV_2005__11_1_72_0
ER  - 
%0 Journal Article
%A Mancini, Gianni
%A Srikanth, P. N.
%T On periodic motions of a two dimensional Toda type chain
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2005
%P 72-87
%V 11
%N 1
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/cocv:2004033/
%R 10.1051/cocv:2004033
%G en
%F COCV_2005__11_1_72_0
Mancini, Gianni; Srikanth, P. N. On periodic motions of a two dimensional Toda type chain. ESAIM: Control, Optimisation and Calculus of Variations, Tome 11 (2005) no. 1, pp. 72-87. doi : 10.1051/cocv:2004033. http://www.numdam.org/articles/10.1051/cocv:2004033/

[1] R.A. Adams, Sobolev Spaces. A.P (1975). | MR | Zbl

[2] V.I. Arnold, Proof of a Theorem of A.N. Kolmogorov on the invariance of quasi-periodic motions under small perturbations of the Hamiltonian. Russ. Math. Surv. 18 (1963) 9-36. | Zbl

[3] H. Brezis and L. Nirenberg, Forced vibrations for a nonlinear wave equation. CPAM, XXXI(1) (1978) 1-30. | Zbl

[4] H. Brezis, J.M. Coron and L. Nirenberg, Free Vibrations for a Nonlinear Wave Equation and a Theorem of P. Rabinowitz. CPAM, XXXIII (1980) 667-684. | Zbl

[5] G. Friesecke and A.D. Wattis Jonathan, Existence Theorem for Solitary Waves on Lattices. Commun. Math. Phys. 161 (1994) 391-418. | Zbl

[6] G. Iooss, Travelling waves in the Fermi-Pasta-Ulam lattice. Nonlinearity 13 (2000) 849-866. | Zbl

[7] M.A. Krasnoselsky and Y.B. Rutitsky, Convex Functions and Orlicz Spaces. Internat. Monogr. Adv. Math. Phys. Hindustan Publishing Corpn., India (1962).

[8] H. Lovicarova', Periodic solutions of a weakly nonlinear wave equation in one dimension. Czechmath. J. 19 (1969) 324-342. | Zbl

[9] J. Moser, On invariant curves of area-preserving mappings of an annulus. Nachr. Akad. Wiss. Göttingen, K1 2 (1962) 1. | MR | Zbl

[10] A.V. Mikhailov, Integrability of a Two-Dimensional Generalization of the Toda Chain. JETP Lett. 30 (1979) 414-413.

[11] L. Nirenberg, Variational Methods in nonlinear problems. M. Giaquinta Ed., Springer-Verlag, Lect. Notes Math. 1365 (1987). | MR | Zbl

[12] P.H. Rabinowitz, Periodic solutions of Hamiltonian Systems. Comm. Pure Appl. Math. 31 (1978) 157-184. | Zbl

[13] B. Ruf and P.N. Srikanth, On periodic Motions of Lattices of Toda Type via Critical Point Theory. Arch. Ration. Mech. Anal. 126 (1994) 369-385. | Zbl

[14] M. Toda, Theory of Nonlinear Lattices. Springer-Verlag (1989). | MR | Zbl

Cité par Sources :