An optimal matching problem
ESAIM: Control, Optimisation and Calculus of Variations, Tome 11 (2005) no. 1, pp. 57-71.

Given two measured spaces (X,μ) and (Y,ν), and a third space Z, given two functions u(x,z) and v(x,z), we study the problem of finding two maps s:XZ and t:YZ such that the images s(μ) and t(ν) coincide, and the integral Xu(x,s(x))dμ-Yv(y,t(y))dν is maximal. We give condition on u and v for which there is a unique solution.

DOI : 10.1051/cocv:2004034
Classification : 05C38, 15A15, 05A15, 15A18
Mots-clés : optimal transportation, measure-preserving maps
@article{COCV_2005__11_1_57_0,
     author = {Ekeland, Ivar},
     title = {An optimal matching problem},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {57--71},
     publisher = {EDP-Sciences},
     volume = {11},
     number = {1},
     year = {2005},
     doi = {10.1051/cocv:2004034},
     mrnumber = {2110613},
     zbl = {1106.49054},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/cocv:2004034/}
}
TY  - JOUR
AU  - Ekeland, Ivar
TI  - An optimal matching problem
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2005
SP  - 57
EP  - 71
VL  - 11
IS  - 1
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/cocv:2004034/
DO  - 10.1051/cocv:2004034
LA  - en
ID  - COCV_2005__11_1_57_0
ER  - 
%0 Journal Article
%A Ekeland, Ivar
%T An optimal matching problem
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2005
%P 57-71
%V 11
%N 1
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/cocv:2004034/
%R 10.1051/cocv:2004034
%G en
%F COCV_2005__11_1_57_0
Ekeland, Ivar. An optimal matching problem. ESAIM: Control, Optimisation and Calculus of Variations, Tome 11 (2005) no. 1, pp. 57-71. doi : 10.1051/cocv:2004034. https://www.numdam.org/articles/10.1051/cocv:2004034/

[1] Y. Brenier, Polar factorization and monotone rearrangements of vector-valued functions. Comm. Pure App. Math. 44 (1991) 375-417. | Zbl

[2] G. Carlier, Duality and existence for a class of mass transportation problems and economic applications, Adv. Math. Economics 5 (2003) 1-21.

[3] I. Ekeland and R. Temam, Convex analysis and variational problems. North-Holland Elsevier (1974) new edition, SIAM Classics in Appl. Math. (1999). | MR | Zbl

[4] W. Gangbo and R. Mccann, The geometry of optimal transportation. Acta Math. 177 (1996) 113-161. | Zbl

[5] I. Ekeland, J. Heckman and L. Nesheim, Identification and estimation of hedonic models. J. Political Economy 112 (2004) 60-109.

[6] L. Kantorovitch, On the transfer of masses, Dokl. Ak. Nauk USSR 37 (1942) 7-8.

[7] S. Rachev and A. Ruschendorf, Mass transportation problems. Springer-Verlag (1998).

[8] C. Villani, Topics in mass transportation. Grad. Stud. Math. 58 (2003) | MR | Zbl

  • Goldfeld, Ziv; Kato, Kengo; Rioux, Gabriel; Sadhu, Ritwik Limit theorems for entropic optimal transport maps and Sinkhorn divergence, Electronic Journal of Statistics, Volume 18 (2024) no. 1 | DOI:10.1214/24-ejs2217
  • García Trillos, Nicolás; Sen, Bodhisattva A new perspective on denoising based on optimal transport, Information and Inference: A Journal of the IMA, Volume 13 (2024) no. 4 | DOI:10.1093/imaiai/iaae029
  • Adu, Daniel Owusu; Gharesifard, Bahman Robust Matching for Teams, Journal of Optimization Theory and Applications, Volume 200 (2024) no. 2, p. 501 | DOI:10.1007/s10957-023-02349-3
  • Ennaji, Hamza; Mérigot, Quentin; Nenna, Luca; Pass, Brendan Robust Risk Management via Multi-marginal Optimal Transport, Journal of Optimization Theory and Applications, Volume 202 (2024) no. 2, p. 554 | DOI:10.1007/s10957-024-02438-x
  • Coulson, N. Edward; Dong, Zhi; Sing, Tien Foo Estimating Supply Functions for Residential Real Estate Attributes, Real Estate Economics, Volume 49 (2021) no. 2, p. 397 | DOI:10.1111/1540-6229.12268
  • Tupitsa, Nazarii; Dvurechensky, Pavel; Gasnikov, Alexander; Uribe, Cesar A., 2020 59th IEEE Conference on Decision and Control (CDC) (2020), p. 6132 | DOI:10.1109/cdc42340.2020.9304010
  • Nenna, Luca; Pass, Brendan Variational problems involving unequal dimensional optimal transport, Journal de Mathématiques Pures et Appliquées, Volume 139 (2020), p. 83 | DOI:10.1016/j.matpur.2020.05.004
  • Pass, Brendan Interpolating between matching and hedonic pricing models, Economic Theory, Volume 67 (2019) no. 2, p. 393 | DOI:10.1007/s00199-018-1126-8
  • Dizdar, Deniz Two-Sided Investment and Matching with Multidimensional Cost Types and Attributes, American Economic Journal: Microeconomics, Volume 10 (2018) no. 3, p. 86 | DOI:10.1257/mic.20150147
  • Mazón, J. M.; Rossi, J. D.; Toledo, J. An optimal matching problem with constraints, Revista Matemática Complutense, Volume 31 (2018) no. 2, p. 407 | DOI:10.1007/s13163-018-0256-7
  • Guillen, Nestor; Kitagawa, Jun Pointwise Estimates and Regularity in Geometric Optics and Other Generated Jacobian Equations, Communications on Pure and Applied Mathematics, Volume 70 (2017) no. 6, p. 1146 | DOI:10.1002/cpa.21691
  • Igbida, Noureddine; Nguyen, Van Thanh; Toledo, Julián On the Uniqueness and Numerical Approximations for a Matching Problem, SIAM Journal on Optimization, Volume 27 (2017) no. 4, p. 2459 | DOI:10.1137/16m1105001
  • Pass, Brendan Multi-marginal optimal transport: Theory and applications, ESAIM: Mathematical Modelling and Numerical Analysis, Volume 49 (2015) no. 6, p. 1771 | DOI:10.1051/m2an/2015020
  • Mazón, J. M.; Rossi, Julio D.; Toledo, J. Optimal matching problems with costs given by Finsler distances, Communications on Pure and Applied Analysis, Volume 14 (2014) no. 1, p. 229 | DOI:10.3934/cpaa.2015.14.229
  • Pass, Brendan Multi-marginal optimal transport and multi-agent matching problems: Uniqueness and structure of solutions, Discrete Continuous Dynamical Systems - A, Volume 34 (2014) no. 4, p. 1623 | DOI:10.3934/dcds.2014.34.1623
  • Ghoussoub, Nassif; Moameni, Abbas Optimal mass transport and symmetric representations of their cost functions, Mathematics and Financial Economics, Volume 8 (2014) no. 4, p. 435 | DOI:10.1007/s11579-014-0126-0
  • Mazón, José M.; Rossi, Julio D.; Toledo, Julián An Optimal Matching Problem for the Euclidean Distance, SIAM Journal on Mathematical Analysis, Volume 46 (2014) no. 1, p. 233 | DOI:10.1137/120901465
  • Kim, Ju Hyun Identifying the Distribution of Treatment Effects under Support Restrictions, SSRN Electronic Journal (2014) | DOI:10.2139/ssrn.2512048
  • Pass, Brendan Regularity properties of optimal transportation problems arising in hedonic pricing models, ESAIM: Control, Optimisation and Calculus of Variations, Volume 19 (2013) no. 3, p. 668 | DOI:10.1051/cocv/2012027
  • Kitagawa, Jun; Warren, Micah Regularity for the Optimal Transportation Problem with Euclidean Distance Squared Cost on the Embedded Sphere, SIAM Journal on Mathematical Analysis, Volume 44 (2012) no. 4, p. 2871 | DOI:10.1137/120865409
  • Carlier, G.; Lachapelle, A. A Planning Problem Combining Calculus of Variations and Optimal Transport, Applied Mathematics Optimization, Volume 63 (2011) no. 1, p. 1 | DOI:10.1007/s00245-010-9107-8
  • Ekeland, Ivar Existence, uniqueness and efficiency of equilibrium in hedonic markets with multidimensional types, Economic Theory, Volume 42 (2010) no. 2, p. 275 | DOI:10.1007/s00199-008-0427-8
  • Chiappori, Pierre-André; McCann, Robert J.; Nesheim, Lars P. Hedonic price equilibria, stable matching, and optimal transport: equivalence, topology, and uniqueness, Economic Theory, Volume 42 (2010) no. 2, p. 317 | DOI:10.1007/s00199-009-0455-z
  • Carlier, G.; Ekeland, I. Matching for teams, Economic Theory, Volume 42 (2010) no. 2, p. 397 | DOI:10.1007/s00199-008-0415-z

Cité par 24 documents. Sources : Crossref