Given two measured spaces
Mots-clés : optimal transportation, measure-preserving maps
@article{COCV_2005__11_1_57_0, author = {Ekeland, Ivar}, title = {An optimal matching problem}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {57--71}, publisher = {EDP-Sciences}, volume = {11}, number = {1}, year = {2005}, doi = {10.1051/cocv:2004034}, mrnumber = {2110613}, zbl = {1106.49054}, language = {en}, url = {https://www.numdam.org/articles/10.1051/cocv:2004034/} }
TY - JOUR AU - Ekeland, Ivar TI - An optimal matching problem JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2005 SP - 57 EP - 71 VL - 11 IS - 1 PB - EDP-Sciences UR - https://www.numdam.org/articles/10.1051/cocv:2004034/ DO - 10.1051/cocv:2004034 LA - en ID - COCV_2005__11_1_57_0 ER -
Ekeland, Ivar. An optimal matching problem. ESAIM: Control, Optimisation and Calculus of Variations, Tome 11 (2005) no. 1, pp. 57-71. doi : 10.1051/cocv:2004034. https://www.numdam.org/articles/10.1051/cocv:2004034/
[1] Polar factorization and monotone rearrangements of vector-valued functions. Comm. Pure App. Math. 44 (1991) 375-417. | Zbl
,[2] Duality and existence for a class of mass transportation problems and economic applications, Adv. Math. Economics 5 (2003) 1-21.
,[3] Convex analysis and variational problems. North-Holland Elsevier (1974) new edition, SIAM Classics in Appl. Math. (1999). | MR | Zbl
and ,[4] The geometry of optimal transportation. Acta Math. 177 (1996) 113-161. | Zbl
and ,[5] Identification and estimation of hedonic models. J. Political Economy 112 (2004) 60-109.
, and ,[6] On the transfer of masses, Dokl. Ak. Nauk USSR 37 (1942) 7-8.
,[7] Mass transportation problems. Springer-Verlag (1998).
and ,[8] Topics in mass transportation. Grad. Stud. Math. 58 (2003) | MR | Zbl
,- Limit theorems for entropic optimal transport maps and Sinkhorn divergence, Electronic Journal of Statistics, Volume 18 (2024) no. 1 | DOI:10.1214/24-ejs2217
- A new perspective on denoising based on optimal transport, Information and Inference: A Journal of the IMA, Volume 13 (2024) no. 4 | DOI:10.1093/imaiai/iaae029
- Robust Matching for Teams, Journal of Optimization Theory and Applications, Volume 200 (2024) no. 2, p. 501 | DOI:10.1007/s10957-023-02349-3
- Robust Risk Management via Multi-marginal Optimal Transport, Journal of Optimization Theory and Applications, Volume 202 (2024) no. 2, p. 554 | DOI:10.1007/s10957-024-02438-x
- Estimating Supply Functions for Residential Real Estate Attributes, Real Estate Economics, Volume 49 (2021) no. 2, p. 397 | DOI:10.1111/1540-6229.12268
- , 2020 59th IEEE Conference on Decision and Control (CDC) (2020), p. 6132 | DOI:10.1109/cdc42340.2020.9304010
- Variational problems involving unequal dimensional optimal transport, Journal de Mathématiques Pures et Appliquées, Volume 139 (2020), p. 83 | DOI:10.1016/j.matpur.2020.05.004
- Interpolating between matching and hedonic pricing models, Economic Theory, Volume 67 (2019) no. 2, p. 393 | DOI:10.1007/s00199-018-1126-8
- Two-Sided Investment and Matching with Multidimensional Cost Types and Attributes, American Economic Journal: Microeconomics, Volume 10 (2018) no. 3, p. 86 | DOI:10.1257/mic.20150147
- An optimal matching problem with constraints, Revista Matemática Complutense, Volume 31 (2018) no. 2, p. 407 | DOI:10.1007/s13163-018-0256-7
- Pointwise Estimates and Regularity in Geometric Optics and Other Generated Jacobian Equations, Communications on Pure and Applied Mathematics, Volume 70 (2017) no. 6, p. 1146 | DOI:10.1002/cpa.21691
- On the Uniqueness and Numerical Approximations for a Matching Problem, SIAM Journal on Optimization, Volume 27 (2017) no. 4, p. 2459 | DOI:10.1137/16m1105001
- Multi-marginal optimal transport: Theory and applications, ESAIM: Mathematical Modelling and Numerical Analysis, Volume 49 (2015) no. 6, p. 1771 | DOI:10.1051/m2an/2015020
- Optimal matching problems with costs given by Finsler distances, Communications on Pure and Applied Analysis, Volume 14 (2014) no. 1, p. 229 | DOI:10.3934/cpaa.2015.14.229
- Multi-marginal optimal transport and multi-agent matching problems: Uniqueness and structure of solutions, Discrete Continuous Dynamical Systems - A, Volume 34 (2014) no. 4, p. 1623 | DOI:10.3934/dcds.2014.34.1623
- Optimal mass transport and symmetric representations of their cost functions, Mathematics and Financial Economics, Volume 8 (2014) no. 4, p. 435 | DOI:10.1007/s11579-014-0126-0
- An Optimal Matching Problem for the Euclidean Distance, SIAM Journal on Mathematical Analysis, Volume 46 (2014) no. 1, p. 233 | DOI:10.1137/120901465
- Identifying the Distribution of Treatment Effects under Support Restrictions, SSRN Electronic Journal (2014) | DOI:10.2139/ssrn.2512048
- Regularity properties of optimal transportation problems arising in hedonic pricing models, ESAIM: Control, Optimisation and Calculus of Variations, Volume 19 (2013) no. 3, p. 668 | DOI:10.1051/cocv/2012027
- Regularity for the Optimal Transportation Problem with Euclidean Distance Squared Cost on the Embedded Sphere, SIAM Journal on Mathematical Analysis, Volume 44 (2012) no. 4, p. 2871 | DOI:10.1137/120865409
- A Planning Problem Combining Calculus of Variations and Optimal Transport, Applied Mathematics Optimization, Volume 63 (2011) no. 1, p. 1 | DOI:10.1007/s00245-010-9107-8
- Existence, uniqueness and efficiency of equilibrium in hedonic markets with multidimensional types, Economic Theory, Volume 42 (2010) no. 2, p. 275 | DOI:10.1007/s00199-008-0427-8
- Hedonic price equilibria, stable matching, and optimal transport: equivalence, topology, and uniqueness, Economic Theory, Volume 42 (2010) no. 2, p. 317 | DOI:10.1007/s00199-009-0455-z
- Matching for teams, Economic Theory, Volume 42 (2010) no. 2, p. 397 | DOI:10.1007/s00199-008-0415-z
Cité par 24 documents. Sources : Crossref