In the 1950’s and 1960’s surface physicists/metallurgists such as Herring and Mullins applied ingenious thermodynamic arguments to explain a number of experimentally observed surface phenomena in crystals. These insights permitted the successful engineering of a large number of alloys, where the major mathematical novelty was that the surface response to external stress was anisotropic. By examining step/terrace (vicinal) surface defects it was discovered through lengthy and tedious experiments that the stored energy density (surface tension) along a step edge was a smooth symmetric function
Mots-clés : complete metric space, generic property, variational problem
@article{COCV_2004__10_4_624_0, author = {Mizel, Victor J. and Zaslavski, Alexander J.}, title = {Anisotropic functions : a genericity result with crystallographic implications}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {624--633}, publisher = {EDP-Sciences}, volume = {10}, number = {4}, year = {2004}, doi = {10.1051/cocv:2004023}, mrnumber = {2111084}, zbl = {1072.49013}, language = {en}, url = {https://www.numdam.org/articles/10.1051/cocv:2004023/} }
TY - JOUR AU - Mizel, Victor J. AU - Zaslavski, Alexander J. TI - Anisotropic functions : a genericity result with crystallographic implications JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2004 SP - 624 EP - 633 VL - 10 IS - 4 PB - EDP-Sciences UR - https://www.numdam.org/articles/10.1051/cocv:2004023/ DO - 10.1051/cocv:2004023 LA - en ID - COCV_2004__10_4_624_0 ER -
%0 Journal Article %A Mizel, Victor J. %A Zaslavski, Alexander J. %T Anisotropic functions : a genericity result with crystallographic implications %J ESAIM: Control, Optimisation and Calculus of Variations %D 2004 %P 624-633 %V 10 %N 4 %I EDP-Sciences %U https://www.numdam.org/articles/10.1051/cocv:2004023/ %R 10.1051/cocv:2004023 %G en %F COCV_2004__10_4_624_0
Mizel, Victor J.; Zaslavski, Alexander J. Anisotropic functions : a genericity result with crystallographic implications. ESAIM: Control, Optimisation and Calculus of Variations, Tome 10 (2004) no. 4, pp. 624-633. doi : 10.1051/cocv:2004023. https://www.numdam.org/articles/10.1051/cocv:2004023/
[1] Wulff theorem and best constant in Sobolev inequality. J. Math. Pures Appl. 71 (1992) 97-118. | MR | Zbl
and ,[2] The Wulff theorem revisited. Proc. R. Soc. Lond. A 432 (1991) 125-145. | MR | Zbl
,[3] Step faceting at the (001) surface of boron doped silicon. Phys. Rev. Lett. 79 (1997) 4226-4229.
et al.,[4] A variational problem modelling behavior of unorthodox silicon crystals. ESAIM: COCV 9 (2003) 145-149. | Numdam | MR | Zbl
, and ,[5] Steps on surfaces: experiment and theory. Surface Science Reports 34 (1999) 175-294.
and ,- Introduction, Turnpike Phenomenon and Symmetric Optimization Problems, Volume 190 (2022), p. 1 | DOI:10.1007/978-3-030-96973-8_1
- Symmetric Optimization Problems, Turnpike Phenomenon and Symmetric Optimization Problems, Volume 190 (2022), p. 25 | DOI:10.1007/978-3-030-96973-8_2
- Optimization Problems Arising in Crystallography, Turnpike Phenomenon and Symmetric Optimization Problems, Volume 190 (2022), p. 267 | DOI:10.1007/978-3-030-96973-8_7
- Well-Posedness and Porosity for Symmetric Optimization Problems, Symmetry, Volume 13 (2021) no. 7, p. 1253 | DOI:10.3390/sym13071253
- Generic Existence of Solutions of Symmetric Optimization Problems, Symmetry, Volume 12 (2020) no. 12, p. 2004 | DOI:10.3390/sym12122004
Cité par 5 documents. Sources : Crossref