We consider an optimal control problem describing a laser-induced population transfer on a
Mots-clés : control of quantum systems, optimal control, sub-riemannian geometry, resonance, pontryagin maximum principle, abnormal extremals, rotating wave approximation
@article{COCV_2004__10_4_593_0, author = {Boscain, Ugo and Charlot, Gr\'egoire}, title = {Resonance of minimizers for n-level quantum systems with an arbitrary cost}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {593--614}, publisher = {EDP-Sciences}, volume = {10}, number = {4}, year = {2004}, doi = {10.1051/cocv:2004022}, mrnumber = {2111082}, zbl = {1072.49002}, language = {en}, url = {https://www.numdam.org/articles/10.1051/cocv:2004022/} }
TY - JOUR AU - Boscain, Ugo AU - Charlot, Grégoire TI - Resonance of minimizers for n-level quantum systems with an arbitrary cost JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2004 SP - 593 EP - 614 VL - 10 IS - 4 PB - EDP-Sciences UR - https://www.numdam.org/articles/10.1051/cocv:2004022/ DO - 10.1051/cocv:2004022 LA - en ID - COCV_2004__10_4_593_0 ER -
%0 Journal Article %A Boscain, Ugo %A Charlot, Grégoire %T Resonance of minimizers for n-level quantum systems with an arbitrary cost %J ESAIM: Control, Optimisation and Calculus of Variations %D 2004 %P 593-614 %V 10 %N 4 %I EDP-Sciences %U https://www.numdam.org/articles/10.1051/cocv:2004022/ %R 10.1051/cocv:2004022 %G en %F COCV_2004__10_4_593_0
Boscain, Ugo; Charlot, Grégoire. Resonance of minimizers for n-level quantum systems with an arbitrary cost. ESAIM: Control, Optimisation and Calculus of Variations, Tome 10 (2004) no. 4, pp. 593-614. doi : 10.1051/cocv:2004022. https://www.numdam.org/articles/10.1051/cocv:2004022/
[1] Control Theory from the Geometric Viewpoint. Springer-Verlag, EMS (2004) 1-410. | MR | Zbl
and ,[2] Sub-Riemannian metrics: minimality of abnormal geodesics versus subanaliticity. ESAIM: COCV 2 (1997) 377-448. | Numdam | MR | Zbl
and ,
[3] Controllability of quantum mechanical systems by root space decomposition of
[4] On subsemigroups of semisimple Lie groups. Ann. Inst. H. Poincaré Anal. Non Linéaire 13 (1996) 117-133. | Numdam | MR | Zbl
, and ,[5] The tangent space in sub-Riemannian geometry. Sub-Riemannian geometry. Progr. Math. 144 (1996) 1-78. | MR | Zbl
,[6] Coerent population transfer among quantum states of atomes and molecules. Rev. Mod. Phys. 70 (1998) 1003-1025.
, and ,[7] Sufficient Conditions for Optimality and the Justification of the Dynamics Programming Principle. SIAM J. Control Optim. 4 (1996) 326-361. | MR | Zbl
,[8] The Role of Singular Trajectories in Control Theory. Springer, SMAI, Vol. 40 (2003). | MR | Zbl
and , and B Piccoli, Optimal Synthesis for Control Systems on 2-D Manifolds. Springer, SMAI, Vol. 43 (2004). |[10] Optimal Control in laser-induced population transfer for two- and three-level quantum systems. J. Math. Phys. 43 (2002) 2107-2132. | MR | Zbl
, , , and ,[11] On the K+P problem for a three-level quantum system: Optimality implies resonance. J. Dyn. Control Syst. 8 (2002) 547-572. | MR | Zbl
, and ,
[12] Optimal Control on a
[13] Determination of the transitivity of bilinear systems. SIAM J. Control Optim. 17 (1979) 212-221. | MR | Zbl
and ,[14] Existence of Regular Syntheses for General Problems. J. Differ. Equations 38 (1980) 317-343. | MR | Zbl
,[15] Every Normal Linear System Has a Regular Time-Optimal Synthesis. Math. Slovaca 28 (1978) 81-100. | MR | Zbl
,[16] Optimal control of two-level quantum systems. IEEE Trans. Automat. Control 46 (2001) 866-876. | Zbl
and ,[17] Population switching between vibrational levels in molecular beams. Chem. Phys. Lett. 149 (1988) 463.
, , , , and ,[18] Controlabilite des sytemes bilineaires. SIAM J. Control Optim. 20 (1982) 377-384. | MR | Zbl
and ,[19] Carnot-Carathéodory spaces seen from within. Sub-Riemannian geometry. Progr. Math. 144 (1996) 79-323. | MR | Zbl
,[20] Rydberg Atoms in “Circular” states. Phys. Rev. Lett. 51 (1983) 1430-1433.
and ,[21] Geometric Control Theory. Cambridge University Press (1997). | MR | Zbl
,[22] Control Systems on Semisimple Lie Groups and Their Homogeneous Spaces. Ann. Inst. Fourier 31 (1981) 151-179. | Numdam | MR | Zbl
and ,[23] Controllability of Non-Linear systems. J. Differ. Equation 12 95-116. | MR | Zbl
and ,[24] Time optimal control in spin systems. Phys. Rev. A 63 (2001).
, and ,[25] Cartan decomposition of SU(n) and Control of Spin Systems. J. Chem. Phys. 267 (2001) 11-23.
and ,[26] Inversion produced and reversed by adiabatic passage. Phys. Rep. 178 (1989) 1-24.
, and ,[27] A Tour of Subriemannian Geometry. American Mathematical Society, Mathematical Surveys and Monographs (2002). | MR | Zbl
,[28] A survey of singular curves in sub-Riemannian geometry. J. Dyn. Control Syst. 1 (1995) 49-90. | MR | Zbl
,[29] Classifications of Generic Singularities for the Planar Time-Optimal Synthesis. SIAM J. Control Optim. 34 (1996) 1914-1946. | MR | Zbl
,[30] Regular Synthesis and Sufficiency Conditions for Optimality. SIAM. J. Control Optim. 39 (2000) 359-410. | MR | Zbl
and ,[31] The Mathematical Theory of Optimal Processes. John Wiley and Sons, Inc (1961). | Zbl
, , and ,[32] Optimal control of quantum-mechanical systems: Existence, numerical approximation, and applications. Phys. Rev. A 37 (1988). | MR
, and ,[33] Quantum control by decomposition of su(2). Phys. Rev. A 62 (2000).
, , and ,[34] Controllability of Invariant Systems on Lie Groups and Homogeneous Spaces. J. Math. Sci. 100 (2000) 2355-2427. | MR | Zbl
,[35] The theory of coherent atomic excitation. New York, NY, Wiley (1990).
,
[36] The Structure of Time-Optimal Trajectories for Single-Input Systems in the Plane: the
Cité par Sources :