We discuss some implications of linear programming for Mather theory [13, 14, 15] and its finite dimensional approximations. We find that the complementary slackness condition of duality theory formally implies that the Mather set lies in an
Mots-clés : linear programming, duality, weak KAM theory
@article{COCV_2002__8__693_0, author = {Evans, L. C. and Gomes, D.}, title = {Linear programming interpretations of {Mather's} variational principle}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {693--702}, publisher = {EDP-Sciences}, volume = {8}, year = {2002}, doi = {10.1051/cocv:2002030}, zbl = {1090.90143}, language = {en}, url = {https://www.numdam.org/articles/10.1051/cocv:2002030/} }
TY - JOUR AU - Evans, L. C. AU - Gomes, D. TI - Linear programming interpretations of Mather's variational principle JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2002 SP - 693 EP - 702 VL - 8 PB - EDP-Sciences UR - https://www.numdam.org/articles/10.1051/cocv:2002030/ DO - 10.1051/cocv:2002030 LA - en ID - COCV_2002__8__693_0 ER -
%0 Journal Article %A Evans, L. C. %A Gomes, D. %T Linear programming interpretations of Mather's variational principle %J ESAIM: Control, Optimisation and Calculus of Variations %D 2002 %P 693-702 %V 8 %I EDP-Sciences %U https://www.numdam.org/articles/10.1051/cocv:2002030/ %R 10.1051/cocv:2002030 %G en %F COCV_2002__8__693_0
Evans, L. C.; Gomes, D. Linear programming interpretations of Mather's variational principle. ESAIM: Control, Optimisation and Calculus of Variations, Tome 8 (2002), pp. 693-702. doi : 10.1051/cocv:2002030. https://www.numdam.org/articles/10.1051/cocv:2002030/
[1] Linear Programming in Infinite Dimensional Spaces. Wiley (1987). | MR | Zbl
and ,[2] Introduction to Linear Optimization. Athena Scientific (1997). | Zbl
and ,[3] Partial differential equations and Monge-Kantorovich mass transfer (survey paper). Available at the website of LCE, at math.berkeley.edu | Zbl
,[4] Some new PDE methods for weak KAM theory. Calc. Var. Partial Differential Equations (to appear). | MR | Zbl
,[5] Effective Hamiltonians and averaging for Hamiltonian dynamics I. Arch. Rational Mech. Anal. 157 (2001) 1-33. | MR | Zbl
and ,[6] Théorème KAM faible et théorie de Mather sur les systèmes lagrangiens. C. R. Acad. Sci. Paris Sér. I Math. 324 (1997) 1043-1046. | MR | Zbl
,[7] Solutions KAM faibles conjuguées et barrières de Peierls. C. R. Acad. Sci. Paris Sér. I Math. 325 (1997) 649-652. | MR | Zbl
,[8] Weak KAM theory in Lagrangian Dynamics, Preliminary Version. Lecture Notes (2001).
,[9] Methods of Mathematical Economics. SIAM, Classics in Appl. Math. 37 (2002). | MR | Zbl
,[10] Numerical methods and Hamilton-Jacobi equations (to appear).
,[11] Linear Algebra. John Wiley (1997). | MR | Zbl
,[12] Homogenization of Hamilton-Jacobi equations. CIRCA (1988) (unpublished).
, and ,[13] Minimal measures. Comment. Math Helvetici 64 (1989) 375-394. | MR | Zbl
,[14] Action minimizing invariant measures for positive definite Lagrangian systems. Math. Z. 207 (1991) 169-207. | MR | Zbl
,[15] Action minimizing orbits in Hamiltonian systems. Transition to Chaos in Classical and Quantum Mechanics, edited by S. Graffi. Sringer, Lecture Notes in Math. 1589 (1994). | MR | Zbl
and ,- Adaptive Time-Varying Routing for Energy Saving and Load Balancing in Wireless Body Area Networks, IEEE Transactions on Mobile Computing, Volume 23 (2024) no. 1, p. 90 | DOI:10.1109/tmc.2022.3213471
- A Viscous Ergodic Problem with Unbounded and Measurable Ingredients, Part 1: HJB Equation, SIAM Journal on Control and Optimization, Volume 62 (2024) no. 1, p. 415 | DOI:10.1137/22m1478069
- Transport and Large Deviations for Schrodinger Operators and Mather Measures, Modeling, Dynamics, Optimization and Bioeconomics III, Volume 224 (2018), p. 247 | DOI:10.1007/978-3-319-74086-7_11
- The vanishing discount problem and viscosity Mather measures. Part 1: The problem on a torus, Journal de Mathématiques Pures et Appliquées, Volume 108 (2017) no. 2, p. 125 | DOI:10.1016/j.matpur.2016.10.013
- Averaging and Linear Programming in Some Singularly Perturbed Problems of Optimal Control, Applied Mathematics Optimization, Volume 71 (2015) no. 2, p. 195 | DOI:10.1007/s00245-014-9257-1
- The Dual Potential, the Involution Kernel and Transport in Ergodic Optimization, Dynamics, Games and Science, Volume 1 (2015), p. 357 | DOI:10.1007/978-3-319-16118-1_20
- On Average Control Generating Families for Singularly Perturbed Optimal Control Problems with Long Run Average Optimality Criteria, Set-Valued and Variational Analysis, Volume 23 (2015) no. 1, p. 87 | DOI:10.1007/s11228-014-0306-3
- Duality Theorems in Ergodic Transport, Journal of Statistical Physics, Volume 149 (2012) no. 5, p. 921 | DOI:10.1007/s10955-012-0626-3
- Kuhn–Tucker Conditions for a Convex Programming Problem in Banach Spaces Partially Ordered by Cone with Empty Interior, Numerical Functional Analysis and Optimization, Volume 33 (2012) no. 4, p. 363 | DOI:10.1080/01630563.2012.657739
- Lipschitzian stability of parametric variational inequalities over generalized polyhedra in Banach spaces, Nonlinear Analysis: Theory, Methods Applications, Volume 74 (2011) no. 2, p. 441 | DOI:10.1016/j.na.2010.09.001
- , 49th IEEE Conference on Decision and Control (CDC) (2010), p. 6680 | DOI:10.1109/cdc.2010.5717687
- A finite dimensional linear programming approximation of Mather's variational problem, ESAIM: Control, Optimisation and Calculus of Variations, Volume 16 (2010) no. 4, p. 1094 | DOI:10.1051/cocv/2009039
- , Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference (2009), p. 1207 | DOI:10.1109/cdc.2009.5400261
- Linear Programming Approach to Deterministic Infinite Horizon Optimal Control Problems with Discounting, SIAM Journal on Control and Optimization, Volume 48 (2009) no. 4, p. 2480 | DOI:10.1137/070696209
- Duality in Linear Programming Problems Related to Deterministic Long Run Average Problems of Optimal Control, SIAM Journal on Control and Optimization, Volume 47 (2008) no. 4, p. 1667 | DOI:10.1137/060676398
- Minimal measures, one-dimensional currents and the Monge–Kantorovich problem, Calculus of Variations and Partial Differential Equations, Volume 27 (2006) no. 1, p. 1 | DOI:10.1007/s00526-006-0017-1
- , Proceedings of the 45th IEEE Conference on Decision and Control (2006), p. 5012 | DOI:10.1109/cdc.2006.377568
- Linear Programming Approach to Deterministic Long Run Average Problems of Optimal Control, SIAM Journal on Control and Optimization, Volume 44 (2006) no. 6, p. 2006 | DOI:10.1137/040616802
- A survey of partial differential equations methods in weak KAM theory, Communications on Pure and Applied Mathematics, Volume 57 (2004) no. 4, p. 445 | DOI:10.1002/cpa.20009
Cité par 19 documents. Sources : Crossref