Error estimates for the numerical approximation of semilinear elliptic control problems with finitely many state constraints
ESAIM: Control, Optimisation and Calculus of Variations, Tome 8 (2002), pp. 345-374.

The goal of this paper is to derive some error estimates for the numerical discretization of some optimal control problems governed by semilinear elliptic equations with bound constraints on the control and a finitely number of equality and inequality state constraints. We prove some error estimates for the optimal controls in the L norm and we also obtain error estimates for the Lagrange multipliers associated to the state constraints as well as for the optimal states and optimal adjoint states.

DOI : 10.1051/cocv:2002049
Classification : 49J20, 49K20, 49M05, 65K10
Mots-clés : distributed control, state constraints, semilinear elliptic equation, numerical approximation, finite element method, error estimates
@article{COCV_2002__8__345_0,
     author = {Casas, Eduardo},
     title = {Error estimates for the numerical approximation of semilinear elliptic control problems with finitely many state constraints},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {345--374},
     publisher = {EDP-Sciences},
     volume = {8},
     year = {2002},
     doi = {10.1051/cocv:2002049},
     mrnumber = {1932955},
     zbl = {1066.49018},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/cocv:2002049/}
}
TY  - JOUR
AU  - Casas, Eduardo
TI  - Error estimates for the numerical approximation of semilinear elliptic control problems with finitely many state constraints
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2002
SP  - 345
EP  - 374
VL  - 8
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/cocv:2002049/
DO  - 10.1051/cocv:2002049
LA  - en
ID  - COCV_2002__8__345_0
ER  - 
%0 Journal Article
%A Casas, Eduardo
%T Error estimates for the numerical approximation of semilinear elliptic control problems with finitely many state constraints
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2002
%P 345-374
%V 8
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/cocv:2002049/
%R 10.1051/cocv:2002049
%G en
%F COCV_2002__8__345_0
Casas, Eduardo. Error estimates for the numerical approximation of semilinear elliptic control problems with finitely many state constraints. ESAIM: Control, Optimisation and Calculus of Variations, Tome 8 (2002), pp. 345-374. doi : 10.1051/cocv:2002049. https://www.numdam.org/articles/10.1051/cocv:2002049/

[1] N. Arada, E. Casas and F. Tröltzsch, Error estimates for the numerical approximation of a semilinear elliptic control problem. Comp. Optim. Appl. (to appear). | MR | Zbl

[2] V. Arnautu and P. Neittaanmäki, Discretization estimates for an elliptic control problem. Numer. Funct. Anal. Optim. (1998) 431-464. | MR | Zbl

[3] J. Bonnans and E. Casas, Contrôle de systèmes elliptiques semilinéaires comportant des contraintes sur l'état, in Nonlinear Partial Differential Equations and Their Applications, Vol. 8, Collège de France Seminar, edited by H. Brezis and J. Lions. Longman Scientific & Technical, New York (1988) 69-86. | Zbl

[4] J. Bonnans and H. Zidani, Optimal control problems with partially polyhedric constraints. SIAM J. Control Optim. 37 (1999) 1726-1741. | MR | Zbl

[5] E. Casas and M. Mateos, Second order optimality conditions for semilinear elliptic control problems with finitely many state constraints. SIAM J. Control Optim. 40 (2002) 1431-1454. | MR | Zbl

[6] , Uniform convergence of the fem. applications to state constrained control problems. Comp. Appl. Math. 21 (2002). | MR | Zbl

[7] E. Casas, M. Mateos and L. Fernández, Second-order optimality conditions for semilinear elliptic control problems with constraints on the gradient of the state. Control Cybernet. 28 (1999) 463-479. | MR | Zbl

[8] E. Casas and F. Tröltzsch, Second order necessary optimality conditions for some state-constrained control problems of semilinear elliptic equations. App. Math. Optim. 39 (1999) 211-227. | MR | Zbl

[9] , Second order necessary and sufficient optimality conditions for optimization problems and applications to control theory. SIAM J. Optim. (to appear). | MR | Zbl

[10] E. Casas, F. Tröltzsch and A. Unger, Second order sufficient optimality conditions for a nonlinear elliptic control problem. J. Anal. Appl. 15 (1996) 687-707. | MR | Zbl

[11] , Second order sufficient optimality conditions for some state-constrained control problems of semilinear elliptic equations. SIAM J. Control Optim. 38 (2000) 1369-1391. | MR | Zbl

[12] P. Ciarlet, The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978). | MR | Zbl

[13] F. Clarke, A new approach to Lagrange multipliers. Math. Oper. Res. 1 (1976) 165-174. | MR | Zbl

[14] R. Falk, Approximation of a class of optimal control problems with order of convergence estimates. J. Math. Anal. Appl. 44 (1973) 28-47. | MR | Zbl

[15] T. Geveci, On the approximation of the solution of an optimal control problem governed by an elliptic equation. RAIRO: Numer. Anal. 13 (1979) 313-328. | Numdam | MR | Zbl

[16] H. Goldberg and F. Tröltzsch, Second order sufficient optimality conditions for a class of nonlinear parabolic boundary control problems. SIAM J. Control Optim. 31 (1993) 1007-1025. | MR | Zbl

[17] P. Grisvard, Elliptic Problems in Nonsmooth Domains. Pitman, Boston-London-Melbourne (1985). | MR | Zbl

[18] K. Malanowski, C. Büskens and H. Maurer, Convergence of approximations to nonlinear control problems, in Mathematical Programming with Data Perturbation, edited by A. Fiacco. New York, Marcel Dekker, Inc. (1997) 253-284. | MR | Zbl

[19] M. Mateos, Problemas de control óptimo gobernados por ecuaciones semilineales con restricciones de tipo integral sobre el gradiente del estado, Ph.D. Thesis. University of Cantabria (2000).

[20] P. Raviart and J. Thomas, Introduction à L'analyse Numérique des Equations aux Dérivées Partielles. Masson, Paris (1983). | Zbl

[21] J. Raymond and F. Tröltzsch, Second order sufficient optimality conditions for nonlinear parabolic control problems with state-constraints. Discrete Contin. Dynam. Systems 6 (2000) 431-450. | MR | Zbl

  • Ge, Liang; Huang, Jian; Zhou, Jianwei Novel efficient iterative schemes for linear finite element approximations of elliptic optimal control problems with integral constraint on the state, Journal of Computational and Applied Mathematics, Volume 456 (2025), p. 116225 | DOI:10.1016/j.cam.2024.116225
  • Shakya, Pratibha; Porwal, Kamana Adaptive Finite Element Method for an Elliptic Optimal Control Problem with Integral State Constraints, Communications on Applied Mathematics and Computation (2024) | DOI:10.1007/s42967-024-00397-8
  • Lin, Xiuxiu; Chen, Yanping; Huang, Yunqing Error Estimates of hp Spectral Element Methods in Nonlinear Optimal Control Problem, Journal of Nonlinear Science, Volume 34 (2024) no. 1 | DOI:10.1007/s00332-023-09991-1
  • Du, Shaohong; He, Xiaoxia Finite element approximation to optimal Dirichlet boundary control problem: A priori and a posteriori error estimates, Computers Mathematics with Applications, Volume 131 (2023), p. 14 | DOI:10.1016/j.camwa.2022.11.022
  • Lin, Xiuxiu; Chen, Yanping; Huang, Yunqing A priori and a posteriori error analysis of hp spectral element discretization for optimal control problems with elliptic equations, Journal of Computational and Applied Mathematics, Volume 423 (2023), p. 114960 | DOI:10.1016/j.cam.2022.114960
  • Zhou, Zhaojie; Liu, Jie; Chen, Yanping; Wang, Qiming Finite element approximation of optimal control problem with integral fractional Laplacian and state constraint, Numerical Algorithms, Volume 94 (2023) no. 4, p. 1983 | DOI:10.1007/s11075-023-01561-6
  • Zhang, Jiaqi; Yang, Yin An efficient and accurate numerical method for the fractional optimal control problems with fractional Laplacian and state constraint, Numerical Methods for Partial Differential Equations, Volume 39 (2023) no. 6, p. 4403 | DOI:10.1002/num.23056
  • Khan, Akhtar A.; Sama, Miguel Error estimates for halfspace regularization of state constrained multiobjective elliptic control problems, Optimization, Volume 72 (2023) no. 4, p. 1009 | DOI:10.1080/02331934.2022.2154605
  • Nhu, V.H.; Tuan, N.Q.; Giang, N.B.; Huong, N.T.T. Continuity regularity of optimal control solutions to distributed and boundary semilinear elliptic optimal control problems with mixed pointwise control-state constraints, Journal of Mathematical Analysis and Applications, Volume 512 (2022) no. 1, p. 126139 | DOI:10.1016/j.jmaa.2022.126139
  • Wang, Fangyuan; Zhou, Zhaojie Spectral Galerkin method for state constrained optimal control of fractional advection‐diffusion‐reaction equations, Numerical Methods for Partial Differential Equations, Volume 38 (2022) no. 5, p. 1526 | DOI:10.1002/num.22853
  • Liu, Jie; Zhou, Zhaojie Finite element approximation of time fractional optimal control problem with integral state constraint, AIMS Mathematics, Volume 6 (2021) no. 1, p. 979 | DOI:10.3934/math.2021059
  • Porwal, Kamana; Shakya, Pratibha A finite element method for an elliptic optimal control problem with integral state constraints, Applied Numerical Mathematics, Volume 169 (2021), p. 273 | DOI:10.1016/j.apnum.2021.07.002
  • Wang, Fangyuan; Li, Xiaodi; Zhou, Zhaojie Spectral Galerkin Approximation of Space Fractional Optimal Control Problem with Integral State Constraint, Fractal and Fractional, Volume 5 (2021) no. 3, p. 102 | DOI:10.3390/fractalfract5030102
  • Toan, Nguyen Thi; Thuy, Le Quang; Van Tuyen, Nguyen; Xiao, Yi-Bin Second-order KKT optimality conditions for multiobjective discrete optimal control problems, Journal of Global Optimization, Volume 79 (2021) no. 1, p. 203 | DOI:10.1007/s10898-020-00935-7
  • Du, Shaohong; Cai, Zhiqiang Adaptive Finite Element Method for Dirichlet Boundary Control of Elliptic Partial Differential Equations, Journal of Scientific Computing, Volume 89 (2021) no. 2 | DOI:10.1007/s10915-021-01644-3
  • Lu, Zuliang; Huang, Fei; Wu, Xiankui; Li, Lin; Liu, Shang Convergence and quasi-optimality of L2norms based an adaptive finite element method for nonlinear optimal control problems, Electronic Research Archive, Volume 28 (2020) no. 4, p. 1459 | DOI:10.3934/era.2020077
  • Guan, Hongbo; Hong, Yapeng; Bi, Congcong Global superconvergence analysis of a nonconforming FEM for Neumann boundary OCPs with elliptic equations, International Journal of Computer Mathematics, Volume 97 (2020) no. 12, p. 2451 | DOI:10.1080/00207160.2019.1704739
  • Shen, Wanfang; Ge, Liang; Liu, Wenbin Stochastic Galerkin Method for Optimal Control Problem Governed by Random Elliptic PDE with State Constraints, Journal of Scientific Computing, Volume 78 (2019) no. 3, p. 1571 | DOI:10.1007/s10915-018-0823-6
  • Neitzel, I.; Wollner, W. A priori L2 L 2 -discretization error estimates for the state in elliptic optimization problems with pointwise inequality state constraints, Numerische Mathematik, Volume 138 (2018) no. 2, p. 273 | DOI:10.1007/s00211-017-0906-6
  • Zhou, Lixin A priori error estimates for optimal control problems with state and control constraints, Optimal Control Applications and Methods, Volume 39 (2018) no. 3, p. 1168 | DOI:10.1002/oca.2402
  • Casas, Eduardo; Wachsmuth, Daniel; Wachsmuth, Gerd Second-Order Analysis and Numerical Approximation for Bang-Bang Bilinear Control Problems, SIAM Journal on Control and Optimization, Volume 56 (2018) no. 6, p. 4203 | DOI:10.1137/17m1139953
  • Casas, Eduardo; Mateos, Mariano Optimal Control of Partial Differential Equations, Computational Mathematics, Numerical Analysis and Applications, Volume 13 (2017), p. 3 | DOI:10.1007/978-3-319-49631-3_1
  • Jadamba, B.; Khan, A.; Sama, M. Error estimates for integral constraint regularization of state-constrained elliptic control problems, Computational Optimization and Applications, Volume 67 (2017) no. 1, p. 39 | DOI:10.1007/s10589-016-9885-2
  • Guan, Hong-Bo; Shi, Dong-Yang A Nonconforming Finite Element Method for Constrained Optimal Control Problems Governed by Parabolic Equations, Taiwanese Journal of Mathematics, Volume 21 (2017) no. 5 | DOI:10.11650/tjm/7929
  • Huang, Fenglin; Chen, Yanping; Shi, Xiulian Equivalent a Posteriori Error Estimator of Spectral Approximation for Control Problems with Integral Control-State Constraints in One Dimension, Advances in Applied Mathematics and Mechanics, Volume 8 (2016) no. 3, p. 464 | DOI:10.4208/aamm.2014.m591
  • Guan, Hongbo; Shi, Dongyang; Guan, Xiaofei High accuracy analysis of nonconforming MFEM for constrained optimal control problems governed by Stokes equations, Applied Mathematics Letters, Volume 53 (2016), p. 17 | DOI:10.1016/j.aml.2015.09.016
  • Ahmad Ali, Ahmad; Deckelnick, Klaus; Hinze, Michael Global minima for semilinear optimal control problems, Computational Optimization and Applications, Volume 65 (2016) no. 1, p. 261 | DOI:10.1007/s10589-016-9833-1
  • Zhou, Jianwei Improved optimal conditions and iterative parameters for the optimal control problems with an integral constraint in square, Journal of Computational and Applied Mathematics, Volume 307 (2016), p. 367 | DOI:10.1016/j.cam.2015.12.014
  • Chen, Yanping; Huang, Fenglin Galerkin Spectral Approximation of Elliptic Optimal Control Problems with H1 H 1 -Norm State Constraint, Journal of Scientific Computing, Volume 67 (2016) no. 1, p. 65 | DOI:10.1007/s10915-015-0071-y
  • Neitzel, Ira; Pfefferer, Johannes; Rösch, Arnd Finite Element Discretization of State-Constrained Elliptic Optimal Control Problems with Semilinear State Equation, SIAM Journal on Control and Optimization, Volume 53 (2015) no. 2, p. 874 | DOI:10.1137/140960645
  • Guan, Hong-Bo; Shi, Dong-Yang A high accuracy NFEM for constrained optimal control problems governed by elliptic equations, Applied Mathematics and Computation, Volume 245 (2014), p. 382 | DOI:10.1016/j.amc.2014.07.077
  • Huang, Fenglin; Chen, Yanping Error estimates for spectral approximation of elliptic control problems with integral state and control constraints, Computers Mathematics with Applications, Volume 68 (2014) no. 8, p. 789 | DOI:10.1016/j.camwa.2014.07.002
  • Casas, Eduardo; Mateos, Mariano; Vexler, Boris New regularity results and improved error estimates for optimal control problems with state constraints, ESAIM: Control, Optimisation and Calculus of Variations, Volume 20 (2014) no. 3, p. 803 | DOI:10.1051/cocv/2013084
  • Leykekhman, Dmitriy; Meidner, Dominik; Vexler, Boris Optimal error estimates for finite element discretization of elliptic optimal control problems with finitely many pointwise state constraints, Computational Optimization and Applications, Volume 55 (2013) no. 3, p. 769 | DOI:10.1007/s10589-013-9537-8
  • Casas, Eduardo; Mateos, Mariano Numerical approximation of elliptic control problems with finitely many pointwise constraints, Computational Optimization and Applications, Volume 51 (2012) no. 3, p. 1319 | DOI:10.1007/s10589-011-9394-2
  • Casas, Eduardo; Tröltzsch, Fredi A general theorem on error estimates with application to a quasilinear elliptic optimal control problem, Computational Optimization and Applications, Volume 53 (2012) no. 1, p. 173 | DOI:10.1007/s10589-011-9453-8
  • Hinze, Michael; Rösch, Arnd Discretization of Optimal Control Problems, Constrained Optimization and Optimal Control for Partial Differential Equations, Volume 160 (2012), p. 391 | DOI:10.1007/978-3-0348-0133-1_21
  • Niu, Haifeng; Yuan, Lei; Yang, Danping Adaptive finite element method for an optimal control problem of Stokes flow with L2‐norm state constraint, International Journal for Numerical Methods in Fluids, Volume 69 (2012) no. 3, p. 534 | DOI:10.1002/fld.2572
  • Jadamba, Baasansuren; Khan, Akhtar A.; Sama, Miguel Regularization for state constrained optimal control problems by half spaces based decoupling, Systems Control Letters, Volume 61 (2012) no. 6, p. 707 | DOI:10.1016/j.sysconle.2012.03.003
  • Merino, Pedro; Neitzel, Ira; Tröltzsch, Fredi On linear-quadratic elliptic control problems of semi-infinite type, Applicable Analysis, Volume 90 (2011) no. 6, p. 1047 | DOI:10.1080/00036811.2010.489187
  • Gong, Wei; Yan, Ningning A Mixed Finite Element Scheme for Optimal Control Problems with Pointwise State Constraints, Journal of Scientific Computing, Volume 46 (2011) no. 2, p. 182 | DOI:10.1007/s10915-010-9392-z
  • Schiela, Anton; Günther, Andreas An interior point algorithm with inexact step computation in function space for state constrained optimal control, Numerische Mathematik, Volume 119 (2011) no. 2, p. 373 | DOI:10.1007/s00211-011-0381-4
  • Meidner, Dominik; Rannacher, Rolf; Vexler, Boris A Priori Error Estimates for Finite Element Discretizations of Parabolic Optimization Problems with Pointwise State Constraints in Time, SIAM Journal on Control and Optimization, Volume 49 (2011) no. 5, p. 1961 | DOI:10.1137/100793888
  • Casas, Eduardo; Tröltzsch, Fredi Recent advances in the analysis of pointwise state-constrained elliptic optimal control problems, ESAIM: Control, Optimisation and Calculus of Variations, Volume 16 (2010) no. 3, p. 581 | DOI:10.1051/cocv/2009010
  • Merino, Pedro; Tröltzsch, Fredi; Vexler, Boris Error estimates for the finite element approximation of a semilinear elliptic control problem with state constraints and finite dimensional control space, ESAIM: Mathematical Modelling and Numerical Analysis, Volume 44 (2010) no. 1, p. 167 | DOI:10.1051/m2an/2009045
  • Hinze, Michael; Tröltzsch, Fredi Discrete concepts versus error analysis in PDE‐constrained optimization, GAMM-Mitteilungen, Volume 33 (2010) no. 2, p. 148 | DOI:10.1002/gamm.201010012
  • Tröltzsch, Fredi On Finite Element Error Estimates for Optimal Control Problems with Elliptic PDEs, Large-Scale Scientific Computing, Volume 5910 (2010), p. 40 | DOI:10.1007/978-3-642-12535-5_4
  • Krumbiegel, K.; Meyer, C.; Rösch, A. A Priori Error Analysis for Linear Quadratic Elliptic Neumann Boundary Control Problems with Control and State Constraints, SIAM Journal on Control and Optimization, Volume 48 (2010) no. 8, p. 5108 | DOI:10.1137/090746148
  • Liu, Wenbin; Yang, Danping; Yuan, Lei; Ma, Chaoqun Finite Element Approximations of an Optimal Control Problem with Integral State Constraint, SIAM Journal on Numerical Analysis, Volume 48 (2010) no. 3, p. 1163 | DOI:10.1137/080737095
  • Casas, Eduardo Necessary and sufficient optimality conditions for elliptic control problems with finitely many pointwise state constraints, ESAIM: Control, Optimisation and Calculus of Variations, Volume 14 (2008) no. 3, p. 575 | DOI:10.1051/cocv:2007063
  • Deckelnick, Klaus; Günther, Andreas; Hinze, Michael Numerical analysis and algorithms in control and state constrained optimization with PDEs, PAMM, Volume 7 (2007) no. 1, p. 1060503 | DOI:10.1002/pamm.200700456
  • Casas, Eduardo; Mateos, Mariano; Raymond, Jean-Pierre Error Estimates for the Numerical Approximation of a Distributed Control Problem for the Steady-State Navier–Stokes Equations, SIAM Journal on Control and Optimization, Volume 46 (2007) no. 3, p. 952 | DOI:10.1137/060649999
  • Deckelnick, Klaus; Hinze, Michael Convergence of a Finite Element Approximation to a State-Constrained Elliptic Control Problem, SIAM Journal on Numerical Analysis, Volume 45 (2007) no. 5, p. 1937 | DOI:10.1137/060652361
  • Casas, Eduardo; Raymond, Jean‐Pierre Error Estimates for the Numerical Approximation of Dirichlet Boundary Control for Semilinear Elliptic Equations, SIAM Journal on Control and Optimization, Volume 45 (2006) no. 5, p. 1586 | DOI:10.1137/050626600
  • Zuazua, Enrique Propagation, Observation, and Control of Waves Approximated by Finite Difference Methods, SIAM Review, Volume 47 (2005) no. 2, p. 197 | DOI:10.1137/s0036144503432862

Cité par 55 documents. Sources : Crossref