The goal of this paper is to derive some error estimates for the numerical discretization of some optimal control problems governed by semilinear elliptic equations with bound constraints on the control and a finitely number of equality and inequality state constraints. We prove some error estimates for the optimal controls in the
Mots-clés : distributed control, state constraints, semilinear elliptic equation, numerical approximation, finite element method, error estimates
@article{COCV_2002__8__345_0, author = {Casas, Eduardo}, title = {Error estimates for the numerical approximation of semilinear elliptic control problems with finitely many state constraints}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {345--374}, publisher = {EDP-Sciences}, volume = {8}, year = {2002}, doi = {10.1051/cocv:2002049}, mrnumber = {1932955}, zbl = {1066.49018}, language = {en}, url = {https://www.numdam.org/articles/10.1051/cocv:2002049/} }
TY - JOUR AU - Casas, Eduardo TI - Error estimates for the numerical approximation of semilinear elliptic control problems with finitely many state constraints JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2002 SP - 345 EP - 374 VL - 8 PB - EDP-Sciences UR - https://www.numdam.org/articles/10.1051/cocv:2002049/ DO - 10.1051/cocv:2002049 LA - en ID - COCV_2002__8__345_0 ER -
%0 Journal Article %A Casas, Eduardo %T Error estimates for the numerical approximation of semilinear elliptic control problems with finitely many state constraints %J ESAIM: Control, Optimisation and Calculus of Variations %D 2002 %P 345-374 %V 8 %I EDP-Sciences %U https://www.numdam.org/articles/10.1051/cocv:2002049/ %R 10.1051/cocv:2002049 %G en %F COCV_2002__8__345_0
Casas, Eduardo. Error estimates for the numerical approximation of semilinear elliptic control problems with finitely many state constraints. ESAIM: Control, Optimisation and Calculus of Variations, Tome 8 (2002), pp. 345-374. doi : 10.1051/cocv:2002049. https://www.numdam.org/articles/10.1051/cocv:2002049/
[1] Error estimates for the numerical approximation of a semilinear elliptic control problem. Comp. Optim. Appl. (to appear). | MR | Zbl
, and ,[2] Discretization estimates for an elliptic control problem. Numer. Funct. Anal. Optim. (1998) 431-464. | MR | Zbl
and ,[3] Contrôle de systèmes elliptiques semilinéaires comportant des contraintes sur l'état, in Nonlinear Partial Differential Equations and Their Applications, Vol. 8, Collège de France Seminar, edited by H. Brezis and J. Lions. Longman Scientific & Technical, New York (1988) 69-86. | Zbl
and ,[4] Optimal control problems with partially polyhedric constraints. SIAM J. Control Optim. 37 (1999) 1726-1741. | MR | Zbl
and ,[5] Second order optimality conditions for semilinear elliptic control problems with finitely many state constraints. SIAM J. Control Optim. 40 (2002) 1431-1454. | MR | Zbl
and ,[6] , Uniform convergence of the fem. applications to state constrained control problems. Comp. Appl. Math. 21 (2002). | MR | Zbl
[7] Second-order optimality conditions for semilinear elliptic control problems with constraints on the gradient of the state. Control Cybernet. 28 (1999) 463-479. | MR | Zbl
, and ,[8] Second order necessary optimality conditions for some state-constrained control problems of semilinear elliptic equations. App. Math. Optim. 39 (1999) 211-227. | MR | Zbl
and ,[9] , Second order necessary and sufficient optimality conditions for optimization problems and applications to control theory. SIAM J. Optim. (to appear). | MR | Zbl
[10] Second order sufficient optimality conditions for a nonlinear elliptic control problem. J. Anal. Appl. 15 (1996) 687-707. | MR | Zbl
, and ,[11] , Second order sufficient optimality conditions for some state-constrained control problems of semilinear elliptic equations. SIAM J. Control Optim. 38 (2000) 1369-1391. | MR | Zbl
[12] The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978). | MR | Zbl
,[13] A new approach to Lagrange multipliers. Math. Oper. Res. 1 (1976) 165-174. | MR | Zbl
,[14] Approximation of a class of optimal control problems with order of convergence estimates. J. Math. Anal. Appl. 44 (1973) 28-47. | MR | Zbl
,[15] On the approximation of the solution of an optimal control problem governed by an elliptic equation. RAIRO: Numer. Anal. 13 (1979) 313-328. | Numdam | MR | Zbl
,[16] Second order sufficient optimality conditions for a class of nonlinear parabolic boundary control problems. SIAM J. Control Optim. 31 (1993) 1007-1025. | MR | Zbl
and ,[17] Elliptic Problems in Nonsmooth Domains. Pitman, Boston-London-Melbourne (1985). | MR | Zbl
,[18] Convergence of approximations to nonlinear control problems, in Mathematical Programming with Data Perturbation, edited by A. Fiacco. New York, Marcel Dekker, Inc. (1997) 253-284. | MR | Zbl
, and ,[19] Problemas de control óptimo gobernados por ecuaciones semilineales con restricciones de tipo integral sobre el gradiente del estado, Ph.D. Thesis. University of Cantabria (2000).
,[20] Introduction à L'analyse Numérique des Equations aux Dérivées Partielles. Masson, Paris (1983). | Zbl
and ,[21] Second order sufficient optimality conditions for nonlinear parabolic control problems with state-constraints. Discrete Contin. Dynam. Systems 6 (2000) 431-450. | MR | Zbl
and ,- Novel efficient iterative schemes for linear finite element approximations of elliptic optimal control problems with integral constraint on the state, Journal of Computational and Applied Mathematics, Volume 456 (2025), p. 116225 | DOI:10.1016/j.cam.2024.116225
- Adaptive Finite Element Method for an Elliptic Optimal Control Problem with Integral State Constraints, Communications on Applied Mathematics and Computation (2024) | DOI:10.1007/s42967-024-00397-8
- Error Estimates of hp Spectral Element Methods in Nonlinear Optimal Control Problem, Journal of Nonlinear Science, Volume 34 (2024) no. 1 | DOI:10.1007/s00332-023-09991-1
- Finite element approximation to optimal Dirichlet boundary control problem: A priori and a posteriori error estimates, Computers Mathematics with Applications, Volume 131 (2023), p. 14 | DOI:10.1016/j.camwa.2022.11.022
- A priori and a posteriori error analysis of hp spectral element discretization for optimal control problems with elliptic equations, Journal of Computational and Applied Mathematics, Volume 423 (2023), p. 114960 | DOI:10.1016/j.cam.2022.114960
- Finite element approximation of optimal control problem with integral fractional Laplacian and state constraint, Numerical Algorithms, Volume 94 (2023) no. 4, p. 1983 | DOI:10.1007/s11075-023-01561-6
- An efficient and accurate numerical method for the fractional optimal control problems with fractional Laplacian and state constraint, Numerical Methods for Partial Differential Equations, Volume 39 (2023) no. 6, p. 4403 | DOI:10.1002/num.23056
- Error estimates for halfspace regularization of state constrained multiobjective elliptic control problems, Optimization, Volume 72 (2023) no. 4, p. 1009 | DOI:10.1080/02331934.2022.2154605
- Continuity regularity of optimal control solutions to distributed and boundary semilinear elliptic optimal control problems with mixed pointwise control-state constraints, Journal of Mathematical Analysis and Applications, Volume 512 (2022) no. 1, p. 126139 | DOI:10.1016/j.jmaa.2022.126139
- Spectral Galerkin method for state constrained optimal control of fractional advection‐diffusion‐reaction equations, Numerical Methods for Partial Differential Equations, Volume 38 (2022) no. 5, p. 1526 | DOI:10.1002/num.22853
- Finite element approximation of time fractional optimal control problem with integral state constraint, AIMS Mathematics, Volume 6 (2021) no. 1, p. 979 | DOI:10.3934/math.2021059
- A finite element method for an elliptic optimal control problem with integral state constraints, Applied Numerical Mathematics, Volume 169 (2021), p. 273 | DOI:10.1016/j.apnum.2021.07.002
- Spectral Galerkin Approximation of Space Fractional Optimal Control Problem with Integral State Constraint, Fractal and Fractional, Volume 5 (2021) no. 3, p. 102 | DOI:10.3390/fractalfract5030102
- Second-order KKT optimality conditions for multiobjective discrete optimal control problems, Journal of Global Optimization, Volume 79 (2021) no. 1, p. 203 | DOI:10.1007/s10898-020-00935-7
- Adaptive Finite Element Method for Dirichlet Boundary Control of Elliptic Partial Differential Equations, Journal of Scientific Computing, Volume 89 (2021) no. 2 | DOI:10.1007/s10915-021-01644-3
- Convergence and quasi-optimality of
norms based an adaptive finite element method for nonlinear optimal control problems, Electronic Research Archive, Volume 28 (2020) no. 4, p. 1459 | DOI:10.3934/era.2020077 - Global superconvergence analysis of a nonconforming FEM for Neumann boundary OCPs with elliptic equations, International Journal of Computer Mathematics, Volume 97 (2020) no. 12, p. 2451 | DOI:10.1080/00207160.2019.1704739
- Stochastic Galerkin Method for Optimal Control Problem Governed by Random Elliptic PDE with State Constraints, Journal of Scientific Computing, Volume 78 (2019) no. 3, p. 1571 | DOI:10.1007/s10915-018-0823-6
- A priori
L 2 -discretization error estimates for the state in elliptic optimization problems with pointwise inequality state constraints, Numerische Mathematik, Volume 138 (2018) no. 2, p. 273 | DOI:10.1007/s00211-017-0906-6 - A priori error estimates for optimal control problems with state and control constraints, Optimal Control Applications and Methods, Volume 39 (2018) no. 3, p. 1168 | DOI:10.1002/oca.2402
- Second-Order Analysis and Numerical Approximation for Bang-Bang Bilinear Control Problems, SIAM Journal on Control and Optimization, Volume 56 (2018) no. 6, p. 4203 | DOI:10.1137/17m1139953
- Optimal Control of Partial Differential Equations, Computational Mathematics, Numerical Analysis and Applications, Volume 13 (2017), p. 3 | DOI:10.1007/978-3-319-49631-3_1
- Error estimates for integral constraint regularization of state-constrained elliptic control problems, Computational Optimization and Applications, Volume 67 (2017) no. 1, p. 39 | DOI:10.1007/s10589-016-9885-2
- A Nonconforming Finite Element Method for Constrained Optimal Control Problems Governed by Parabolic Equations, Taiwanese Journal of Mathematics, Volume 21 (2017) no. 5 | DOI:10.11650/tjm/7929
- Equivalent a Posteriori Error Estimator of Spectral Approximation for Control Problems with Integral Control-State Constraints in One Dimension, Advances in Applied Mathematics and Mechanics, Volume 8 (2016) no. 3, p. 464 | DOI:10.4208/aamm.2014.m591
- High accuracy analysis of nonconforming MFEM for constrained optimal control problems governed by Stokes equations, Applied Mathematics Letters, Volume 53 (2016), p. 17 | DOI:10.1016/j.aml.2015.09.016
- Global minima for semilinear optimal control problems, Computational Optimization and Applications, Volume 65 (2016) no. 1, p. 261 | DOI:10.1007/s10589-016-9833-1
- Improved optimal conditions and iterative parameters for the optimal control problems with an integral constraint in square, Journal of Computational and Applied Mathematics, Volume 307 (2016), p. 367 | DOI:10.1016/j.cam.2015.12.014
- Galerkin Spectral Approximation of Elliptic Optimal Control Problems with
H 1 -Norm State Constraint, Journal of Scientific Computing, Volume 67 (2016) no. 1, p. 65 | DOI:10.1007/s10915-015-0071-y - Finite Element Discretization of State-Constrained Elliptic Optimal Control Problems with Semilinear State Equation, SIAM Journal on Control and Optimization, Volume 53 (2015) no. 2, p. 874 | DOI:10.1137/140960645
- A high accuracy NFEM for constrained optimal control problems governed by elliptic equations, Applied Mathematics and Computation, Volume 245 (2014), p. 382 | DOI:10.1016/j.amc.2014.07.077
- Error estimates for spectral approximation of elliptic control problems with integral state and control constraints, Computers Mathematics with Applications, Volume 68 (2014) no. 8, p. 789 | DOI:10.1016/j.camwa.2014.07.002
- New regularity results and improved error estimates for optimal control problems with state constraints, ESAIM: Control, Optimisation and Calculus of Variations, Volume 20 (2014) no. 3, p. 803 | DOI:10.1051/cocv/2013084
- Optimal error estimates for finite element discretization of elliptic optimal control problems with finitely many pointwise state constraints, Computational Optimization and Applications, Volume 55 (2013) no. 3, p. 769 | DOI:10.1007/s10589-013-9537-8
- Numerical approximation of elliptic control problems with finitely many pointwise constraints, Computational Optimization and Applications, Volume 51 (2012) no. 3, p. 1319 | DOI:10.1007/s10589-011-9394-2
- A general theorem on error estimates with application to a quasilinear elliptic optimal control problem, Computational Optimization and Applications, Volume 53 (2012) no. 1, p. 173 | DOI:10.1007/s10589-011-9453-8
- Discretization of Optimal Control Problems, Constrained Optimization and Optimal Control for Partial Differential Equations, Volume 160 (2012), p. 391 | DOI:10.1007/978-3-0348-0133-1_21
- Adaptive finite element method for an optimal control problem of Stokes flow with L2‐norm state constraint, International Journal for Numerical Methods in Fluids, Volume 69 (2012) no. 3, p. 534 | DOI:10.1002/fld.2572
- Regularization for state constrained optimal control problems by half spaces based decoupling, Systems Control Letters, Volume 61 (2012) no. 6, p. 707 | DOI:10.1016/j.sysconle.2012.03.003
- On linear-quadratic elliptic control problems of semi-infinite type, Applicable Analysis, Volume 90 (2011) no. 6, p. 1047 | DOI:10.1080/00036811.2010.489187
- A Mixed Finite Element Scheme for Optimal Control Problems with Pointwise State Constraints, Journal of Scientific Computing, Volume 46 (2011) no. 2, p. 182 | DOI:10.1007/s10915-010-9392-z
- An interior point algorithm with inexact step computation in function space for state constrained optimal control, Numerische Mathematik, Volume 119 (2011) no. 2, p. 373 | DOI:10.1007/s00211-011-0381-4
- A Priori Error Estimates for Finite Element Discretizations of Parabolic Optimization Problems with Pointwise State Constraints in Time, SIAM Journal on Control and Optimization, Volume 49 (2011) no. 5, p. 1961 | DOI:10.1137/100793888
- Recent advances in the analysis of pointwise state-constrained elliptic optimal control problems, ESAIM: Control, Optimisation and Calculus of Variations, Volume 16 (2010) no. 3, p. 581 | DOI:10.1051/cocv/2009010
- Error estimates for the finite element approximation of a semilinear elliptic control problem with state constraints and finite dimensional control space, ESAIM: Mathematical Modelling and Numerical Analysis, Volume 44 (2010) no. 1, p. 167 | DOI:10.1051/m2an/2009045
- Discrete concepts versus error analysis in PDE‐constrained optimization, GAMM-Mitteilungen, Volume 33 (2010) no. 2, p. 148 | DOI:10.1002/gamm.201010012
- On Finite Element Error Estimates for Optimal Control Problems with Elliptic PDEs, Large-Scale Scientific Computing, Volume 5910 (2010), p. 40 | DOI:10.1007/978-3-642-12535-5_4
- A Priori Error Analysis for Linear Quadratic Elliptic Neumann Boundary Control Problems with Control and State Constraints, SIAM Journal on Control and Optimization, Volume 48 (2010) no. 8, p. 5108 | DOI:10.1137/090746148
- Finite Element Approximations of an Optimal Control Problem with Integral State Constraint, SIAM Journal on Numerical Analysis, Volume 48 (2010) no. 3, p. 1163 | DOI:10.1137/080737095
- Necessary and sufficient optimality conditions for elliptic control problems with finitely many pointwise state constraints, ESAIM: Control, Optimisation and Calculus of Variations, Volume 14 (2008) no. 3, p. 575 | DOI:10.1051/cocv:2007063
- Numerical analysis and algorithms in control and state constrained optimization with PDEs, PAMM, Volume 7 (2007) no. 1, p. 1060503 | DOI:10.1002/pamm.200700456
- Error Estimates for the Numerical Approximation of a Distributed Control Problem for the Steady-State Navier–Stokes Equations, SIAM Journal on Control and Optimization, Volume 46 (2007) no. 3, p. 952 | DOI:10.1137/060649999
- Convergence of a Finite Element Approximation to a State-Constrained Elliptic Control Problem, SIAM Journal on Numerical Analysis, Volume 45 (2007) no. 5, p. 1937 | DOI:10.1137/060652361
- Error Estimates for the Numerical Approximation of Dirichlet Boundary Control for Semilinear Elliptic Equations, SIAM Journal on Control and Optimization, Volume 45 (2006) no. 5, p. 1586 | DOI:10.1137/050626600
- Propagation, Observation, and Control of Waves Approximated by Finite Difference Methods, SIAM Review, Volume 47 (2005) no. 2, p. 197 | DOI:10.1137/s0036144503432862
Cité par 55 documents. Sources : Crossref