Smooth solutions of systems of quasilinear parabolic equations
ESAIM: Control, Optimisation and Calculus of Variations, Tome 8 (2002), pp. 169-193.

We consider in this article diagonal parabolic systems arising in the context of stochastic differential games. We address the issue of finding smooth solutions of the system. Such a regularity result is extremely important to derive an optimal feedback proving the existence of a Nash point of a certain class of stochastic differential games. Unlike in the case of scalar equation, smoothness of solutions is not achieved in general. A special structure of the nonlinear hamiltonian seems to be the adequate one to achieve the regularity property. A key step in the theory is to prove the existence of Hölder solution.

DOI : 10.1051/cocv:2002059
Classification : 35XX, 49XX
Mots-clés : parabolic equations, quasilinear, game theory, regularity, stochastic optimal control, smallness condition, specific structure, maximum principle, Green function, hamiltonian
@article{COCV_2002__8__169_0,
     author = {Bensoussan, Alain and Frehse, Jens},
     title = {Smooth solutions of systems of quasilinear parabolic equations},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {169--193},
     publisher = {EDP-Sciences},
     volume = {8},
     year = {2002},
     doi = {10.1051/cocv:2002059},
     mrnumber = {1932949},
     zbl = {1078.35022},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/cocv:2002059/}
}
TY  - JOUR
AU  - Bensoussan, Alain
AU  - Frehse, Jens
TI  - Smooth solutions of systems of quasilinear parabolic equations
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2002
SP  - 169
EP  - 193
VL  - 8
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/cocv:2002059/
DO  - 10.1051/cocv:2002059
LA  - en
ID  - COCV_2002__8__169_0
ER  - 
%0 Journal Article
%A Bensoussan, Alain
%A Frehse, Jens
%T Smooth solutions of systems of quasilinear parabolic equations
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2002
%P 169-193
%V 8
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/cocv:2002059/
%R 10.1051/cocv:2002059
%G en
%F COCV_2002__8__169_0
Bensoussan, Alain; Frehse, Jens. Smooth solutions of systems of quasilinear parabolic equations. ESAIM: Control, Optimisation and Calculus of Variations, Tome 8 (2002), pp. 169-193. doi : 10.1051/cocv:2002059. https://www.numdam.org/articles/10.1051/cocv:2002059/

[1] D.G. Aronson, Bounds for Fundamental Solution of a Parabolic Equation. Bull. Amer. Math. Soc. 73 (1968) 890-896. | MR | Zbl

[2] A. Bensoussan and J. Frehse, Regularity of Solutions of Systems of Partial Differential Equations and Applications. Springer Verlag (to be published).

[3] A. Bensoussan and J. Frehse, Nonlinear elliptic systems in stochastic game theory. J. Reine Angew. Math. 350 (1984) 23-67. | MR | Zbl

[4] A. Bensoussan and J. Frehse, Cα-Regularity Results for Quasi-Linear Parabolic Systems. Comment. Math. Univ. Carolin. 31 (1990) 453-474. | MR | Zbl

[5] A. Bensoussan and J. Frehse, Ergodic Bellman systems for stochastic games, in Differential equations, dynamical systems, and control science. Dekker, New York (1994) 411-421. | MR | Zbl

[6] A. Bensoussan and J. Frehse, Ergodic Bellman systems for stochastic games in arbitrary dimension. Proc. Roy. Soc. London Ser. A 449 (1935) 65-77. | MR | Zbl

[7] A. Bensoussan and J. Frehse, Stochastic games for N players. J. Optim. Theory Appl. 105 (2000) 543-565. Special Issue in honor of Professor David G. Luenberger. | MR | Zbl

[8] A. Bensoussan and J.-L. Lions, Impulse control and quasivariational inequalities. Gauthier-Villars (1984). Translated from the French by J.M. Cole. | MR

[9] S. Campanato, Equazioni paraboliche del secondo ordine e spazi L2,θ(Ω,δ). Ann. Mat. Pura Appl. (4) 73 (1966) 55-102. | MR | Zbl

[10] G. Da Prato, Spazi L(p,θ)(Ω,δ) e loro proprietà. Ann. Mat. Pura Appl. (4) 69 (1965) 383-392. | MR | Zbl

[11] J. Frehse, Remarks on diagonal elliptic systems, in Partial differential equations and calculus of variations. Springer, Berlin (1988) 198-210. | MR | Zbl

[12] J. Frehse, Bellman Systems of Stochastic Differential Games with three Players in Optimal Control and Partial Differential Equations, edited by J.L. Menaldi, E. Rofman and A. Sulem. IOS Press (2001). | Zbl

[13] S. Hildebrandt and K.-O. Widman, Some regularity results for quasilinear elliptic systems of second order. Math. Z. 142 (1975) 67-86. | MR | Zbl

[14] J. Leray and J.-L. Lions, Quelques résultats de Višik sur les problèmes elliptiques nonlinéaires par les méthodes de Minty-Browder. Bull. Soc. Math. France 93 (1965) 97-107. | Numdam | Zbl

[15] O.A. Ladyženskaja, V.A. Solonnikov and N.N. Ural'Ceva, Linear and quasilinear equations of parabolic type. American Mathematical Society, Providence, R.I. (1967). | MR | Zbl

[16] M. Struwe, On the Hölder continuity of bounded weak solutions of quasilinear parabolic systems. Manuscripta Math. 35 (1981) 125-145. | MR | Zbl

[17] M. Wiegner, Ein optimaler Regularitätssatz für schwache Lösungen gewisser elliptischer Systeme. Math. Z. 147 (1976) 21-28. | MR | Zbl

  • Jackson, Joe On quasilinear parabolic systems and FBSDEs of quadratic growth, The Annals of Applied Probability, Volume 34 (2024) no. 1A | DOI:10.1214/23-aap1966
  • Jackson, Joe Global existence for quadratic FBSDE systems and application to stochastic differential games, Electronic Communications in Probability, Volume 28 (2023) no. none | DOI:10.1214/23-ecp513
  • Ricciardi, Michele The Convergence Problem in Mean Field Games with Neumann Boundary Conditions, SIAM Journal on Mathematical Analysis, Volume 55 (2023) no. 4, p. 3316 | DOI:10.1137/22m1479075
  • Escauriaza, Luis; Schwarz, Daniel C.; Xing, Hao Radner equilibrium and systems of quadratic BSDEs with discontinuous generators, The Annals of Applied Probability, Volume 32 (2022) no. 5 | DOI:10.1214/21-aap1765
  • Bensoussan, Alain; Frehse, Jens; Yam, Sheung Chi Phillip Systems of quasilinear parabolic equations in Rn and systems of quadratic backward stochastic differential equations, Journal de Mathématiques Pures et Appliquées, Volume 149 (2021), p. 135 | DOI:10.1016/j.matpur.2021.01.006
  • Goffi, Alessandro Transport equations with nonlocal diffusion and applications to Hamilton–Jacobi equations, Journal of Evolution Equations, Volume 21 (2021) no. 4, p. 4261 | DOI:10.1007/s00028-021-00720-3
  • Abdellaoui, B.; Attar, A.; Bentifour, R.; Laamri, E.-H. Existence Results to a Class of Nonlinear Parabolic Systems Involving Potential and Gradient Terms, Mediterranean Journal of Mathematics, Volume 17 (2020) no. 4 | DOI:10.1007/s00009-020-01542-2
  • Auscher, Pascal; Bortz, Simon; Egert, Moritz; Saari, Olli On regularity of weak solutions to linear parabolic systems with measurable coefficients, Journal de Mathématiques Pures et Appliquées, Volume 121 (2019), p. 216 | DOI:10.1016/j.matpur.2018.08.002
  • Carmona, René; Delarue, François Probabilistic Approach to Stochastic Differential Games, Probabilistic Theory of Mean Field Games with Applications I, Volume 83 (2018), p. 67 | DOI:10.1007/978-3-319-58920-6_2
  • Carmona, René; Delarue, François MFGs with a Common Noise: Strong and Weak Solutions, Probabilistic Theory of Mean Field Games with Applications II, Volume 84 (2018), p. 107 | DOI:10.1007/978-3-319-56436-4_2
  • Carmona, René; Delarue, François Solving MFGs with a Common Noise, Probabilistic Theory of Mean Field Games with Applications II, Volume 84 (2018), p. 155 | DOI:10.1007/978-3-319-56436-4_3
  • Carmona, René; Delarue, François The Master Field and the Master Equation, Probabilistic Theory of Mean Field Games with Applications II, Volume 84 (2018), p. 239 | DOI:10.1007/978-3-319-56436-4_4
  • Carmona, René; Delarue, François Optimization in a Random Environment, Probabilistic Theory of Mean Field Games with Applications II, Volume 84 (2018), p. 3 | DOI:10.1007/978-3-319-56436-4_1
  • Carmona, René; Delarue, François Classical Solutions to the Master Equation, Probabilistic Theory of Mean Field Games with Applications II, Volume 84 (2018), p. 323 | DOI:10.1007/978-3-319-56436-4_5
  • Carmona, René; Delarue, François Convergence and Approximations, Probabilistic Theory of Mean Field Games with Applications II, Volume 84 (2018), p. 447 | DOI:10.1007/978-3-319-56436-4_6
  • Carmona, René; Delarue, François Extensions for Volume II, Probabilistic Theory of Mean Field Games with Applications II, Volume 84 (2018), p. 541 | DOI:10.1007/978-3-319-56436-4_7
  • Bensoussan, Alain; Breit, Dominic; Frehse, Jens Parabolic Bellman Equations with Risk Control, SIAM Journal on Control and Optimization, Volume 56 (2018) no. 2, p. 1535 | DOI:10.1137/17m1122839
  • Xing, Hao; Žitković, Gordan A class of globally solvable Markovian quadratic BSDE systems and applications, The Annals of Probability, Volume 46 (2018) no. 1 | DOI:10.1214/17-aop1190
  • Bensoussan, Alain; Breit, Dominic; Frehse, Jens Parabolic Bellman-Systems with Mean Field Dependence, Applied Mathematics Optimization, Volume 73 (2016) no. 3, p. 419 | DOI:10.1007/s00245-016-9344-6
  • Cardaliaguet, Pierre Mean field games: the master equation and the mean field limit, Séminaire Laurent Schwartz — EDP et applications (2016), p. 1 | DOI:10.5802/slsedp.99
  • Beck, Lisa; Bulíček, Miroslav; Frehse, Jens Old and new results in regularity theory for diagonal elliptic systems via blowup techniques, Journal of Differential Equations, Volume 259 (2015) no. 11, p. 6528 | DOI:10.1016/j.jde.2015.07.030
  • Bensoussan, Alain; Frehse, Jens Control and Nash Games with Mean Field Effect, Partial Differential Equations: Theory, Control and Approximation (2014), p. 1 | DOI:10.1007/978-3-642-41401-5_1
  • Bensoussan, Alain; Frehse, Jens Control and nash games with mean field effect, Chinese Annals of Mathematics, Series B, Volume 34 (2013) no. 2, p. 161 | DOI:10.1007/s11401-013-0767-y
  • Bensoussan, Alain; Frehse, Jens; Yam, Phillip Introduction, Mean Field Games and Mean Field Type Control Theory (2013), p. 1 | DOI:10.1007/978-1-4614-8508-7_1
  • Bensoussan, Alain; Frehse, Jens; Yam, Phillip The Mean Field Games, Mean Field Games and Mean Field Type Control Theory (2013), p. 11 | DOI:10.1007/978-1-4614-8508-7_3
  • Bensoussan, Alain; Frehse, Jens; Yam, Phillip The Mean Field Type Control Problems, Mean Field Games and Mean Field Type Control Theory (2013), p. 15 | DOI:10.1007/978-1-4614-8508-7_4
  • Bensoussan, Alain; Frehse, Jens; Yam, Phillip Approximation of Nash Games with a Large Number of Players, Mean Field Games and Mean Field Type Control Theory (2013), p. 31 | DOI:10.1007/978-1-4614-8508-7_5
  • Bensoussan, Alain; Frehse, Jens; Yam, Phillip General Presentation of Mean Field Control Problems, Mean Field Games and Mean Field Type Control Theory (2013), p. 7 | DOI:10.1007/978-1-4614-8508-7_2
  • Bensoussan, Alain; Frehse, Jens; Yam, Phillip Analytic Techniques, Mean Field Games and Mean Field Type Control Theory (2013), p. 99 | DOI:10.1007/978-1-4614-8508-7_10
  • Frehse, Jens; Specovius-Neugebauer, Maria Morrey estimates and Hölder continuity for solutions to parabolic equations with entropy inequalities, Journal für die reine und angewandte Mathematik (Crelles Journal), Volume 2010 (2010) no. 638 | DOI:10.1515/crelle.2010.006
  • Frehse, Jens; Specovius-Neugebauer, Maria Existence of regular solutions to a class of parabolic systems in two space dimensions with critical growth behaviour, ANNALI DELL'UNIVERSITA' DI FERRARA, Volume 55 (2009) no. 2, p. 239 | DOI:10.1007/s11565-009-0071-7
  • Bensoussan, A. Homogenization of Systems of Partial Differential Equations, Variational Analysis and Applications, Volume 79 (2005), p. 173 | DOI:10.1007/0-387-24276-7_13

Cité par 32 documents. Sources : Crossref