We consider in this article diagonal parabolic systems arising in the context of stochastic differential games. We address the issue of finding smooth solutions of the system. Such a regularity result is extremely important to derive an optimal feedback proving the existence of a Nash point of a certain class of stochastic differential games. Unlike in the case of scalar equation, smoothness of solutions is not achieved in general. A special structure of the nonlinear hamiltonian seems to be the adequate one to achieve the regularity property. A key step in the theory is to prove the existence of Hölder solution.
Mots-clés : parabolic equations, quasilinear, game theory, regularity, stochastic optimal control, smallness condition, specific structure, maximum principle, Green function, hamiltonian
@article{COCV_2002__8__169_0, author = {Bensoussan, Alain and Frehse, Jens}, title = {Smooth solutions of systems of quasilinear parabolic equations}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {169--193}, publisher = {EDP-Sciences}, volume = {8}, year = {2002}, doi = {10.1051/cocv:2002059}, mrnumber = {1932949}, zbl = {1078.35022}, language = {en}, url = {https://www.numdam.org/articles/10.1051/cocv:2002059/} }
TY - JOUR AU - Bensoussan, Alain AU - Frehse, Jens TI - Smooth solutions of systems of quasilinear parabolic equations JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2002 SP - 169 EP - 193 VL - 8 PB - EDP-Sciences UR - https://www.numdam.org/articles/10.1051/cocv:2002059/ DO - 10.1051/cocv:2002059 LA - en ID - COCV_2002__8__169_0 ER -
%0 Journal Article %A Bensoussan, Alain %A Frehse, Jens %T Smooth solutions of systems of quasilinear parabolic equations %J ESAIM: Control, Optimisation and Calculus of Variations %D 2002 %P 169-193 %V 8 %I EDP-Sciences %U https://www.numdam.org/articles/10.1051/cocv:2002059/ %R 10.1051/cocv:2002059 %G en %F COCV_2002__8__169_0
Bensoussan, Alain; Frehse, Jens. Smooth solutions of systems of quasilinear parabolic equations. ESAIM: Control, Optimisation and Calculus of Variations, Tome 8 (2002), pp. 169-193. doi : 10.1051/cocv:2002059. https://www.numdam.org/articles/10.1051/cocv:2002059/
[1] Bounds for Fundamental Solution of a Parabolic Equation. Bull. Amer. Math. Soc. 73 (1968) 890-896. | MR | Zbl
,[2] Regularity of Solutions of Systems of Partial Differential Equations and Applications. Springer Verlag (to be published).
and ,[3] Nonlinear elliptic systems in stochastic game theory. J. Reine Angew. Math. 350 (1984) 23-67. | MR | Zbl
and ,
[4]
[5] Ergodic Bellman systems for stochastic games, in Differential equations, dynamical systems, and control science. Dekker, New York (1994) 411-421. | MR | Zbl
and ,[6] Ergodic Bellman systems for stochastic games in arbitrary dimension. Proc. Roy. Soc. London Ser. A 449 (1935) 65-77. | MR | Zbl
and ,
[7] Stochastic games for
[8] Impulse control and quasivariational inequalities. Gauthier-Villars (1984). Translated from the French by J.M. Cole. | MR
and ,
[9] Equazioni paraboliche del secondo ordine e spazi
[10] Spazi
[11] Remarks on diagonal elliptic systems, in Partial differential equations and calculus of variations. Springer, Berlin (1988) 198-210. | MR | Zbl
,[12] Bellman Systems of Stochastic Differential Games with three Players in Optimal Control and Partial Differential Equations, edited by J.L. Menaldi, E. Rofman and A. Sulem. IOS Press (2001). | Zbl
,[13] Some regularity results for quasilinear elliptic systems of second order. Math. Z. 142 (1975) 67-86. | MR | Zbl
and ,[14] Quelques résultats de Višik sur les problèmes elliptiques nonlinéaires par les méthodes de Minty-Browder. Bull. Soc. Math. France 93 (1965) 97-107. | Numdam | Zbl
and ,[15] Linear and quasilinear equations of parabolic type. American Mathematical Society, Providence, R.I. (1967). | MR | Zbl
, and ,[16] On the Hölder continuity of bounded weak solutions of quasilinear parabolic systems. Manuscripta Math. 35 (1981) 125-145. | MR | Zbl
,[17] Ein optimaler Regularitätssatz für schwache Lösungen gewisser elliptischer Systeme. Math. Z. 147 (1976) 21-28. | MR | Zbl
,- On quasilinear parabolic systems and FBSDEs of quadratic growth, The Annals of Applied Probability, Volume 34 (2024) no. 1A | DOI:10.1214/23-aap1966
- Global existence for quadratic FBSDE systems and application to stochastic differential games, Electronic Communications in Probability, Volume 28 (2023) no. none | DOI:10.1214/23-ecp513
- The Convergence Problem in Mean Field Games with Neumann Boundary Conditions, SIAM Journal on Mathematical Analysis, Volume 55 (2023) no. 4, p. 3316 | DOI:10.1137/22m1479075
- Radner equilibrium and systems of quadratic BSDEs with discontinuous generators, The Annals of Applied Probability, Volume 32 (2022) no. 5 | DOI:10.1214/21-aap1765
- Systems of quasilinear parabolic equations in Rn and systems of quadratic backward stochastic differential equations, Journal de Mathématiques Pures et Appliquées, Volume 149 (2021), p. 135 | DOI:10.1016/j.matpur.2021.01.006
- Transport equations with nonlocal diffusion and applications to Hamilton–Jacobi equations, Journal of Evolution Equations, Volume 21 (2021) no. 4, p. 4261 | DOI:10.1007/s00028-021-00720-3
- Existence Results to a Class of Nonlinear Parabolic Systems Involving Potential and Gradient Terms, Mediterranean Journal of Mathematics, Volume 17 (2020) no. 4 | DOI:10.1007/s00009-020-01542-2
- On regularity of weak solutions to linear parabolic systems with measurable coefficients, Journal de Mathématiques Pures et Appliquées, Volume 121 (2019), p. 216 | DOI:10.1016/j.matpur.2018.08.002
- Probabilistic Approach to Stochastic Differential Games, Probabilistic Theory of Mean Field Games with Applications I, Volume 83 (2018), p. 67 | DOI:10.1007/978-3-319-58920-6_2
- MFGs with a Common Noise: Strong and Weak Solutions, Probabilistic Theory of Mean Field Games with Applications II, Volume 84 (2018), p. 107 | DOI:10.1007/978-3-319-56436-4_2
- Solving MFGs with a Common Noise, Probabilistic Theory of Mean Field Games with Applications II, Volume 84 (2018), p. 155 | DOI:10.1007/978-3-319-56436-4_3
- The Master Field and the Master Equation, Probabilistic Theory of Mean Field Games with Applications II, Volume 84 (2018), p. 239 | DOI:10.1007/978-3-319-56436-4_4
- Optimization in a Random Environment, Probabilistic Theory of Mean Field Games with Applications II, Volume 84 (2018), p. 3 | DOI:10.1007/978-3-319-56436-4_1
- Classical Solutions to the Master Equation, Probabilistic Theory of Mean Field Games with Applications II, Volume 84 (2018), p. 323 | DOI:10.1007/978-3-319-56436-4_5
- Convergence and Approximations, Probabilistic Theory of Mean Field Games with Applications II, Volume 84 (2018), p. 447 | DOI:10.1007/978-3-319-56436-4_6
- Extensions for Volume II, Probabilistic Theory of Mean Field Games with Applications II, Volume 84 (2018), p. 541 | DOI:10.1007/978-3-319-56436-4_7
- Parabolic Bellman Equations with Risk Control, SIAM Journal on Control and Optimization, Volume 56 (2018) no. 2, p. 1535 | DOI:10.1137/17m1122839
- A class of globally solvable Markovian quadratic BSDE systems and applications, The Annals of Probability, Volume 46 (2018) no. 1 | DOI:10.1214/17-aop1190
- Parabolic Bellman-Systems with Mean Field Dependence, Applied Mathematics Optimization, Volume 73 (2016) no. 3, p. 419 | DOI:10.1007/s00245-016-9344-6
- Mean field games: the master equation and the mean field limit, Séminaire Laurent Schwartz — EDP et applications (2016), p. 1 | DOI:10.5802/slsedp.99
- Old and new results in regularity theory for diagonal elliptic systems via blowup techniques, Journal of Differential Equations, Volume 259 (2015) no. 11, p. 6528 | DOI:10.1016/j.jde.2015.07.030
- Control and Nash Games with Mean Field Effect, Partial Differential Equations: Theory, Control and Approximation (2014), p. 1 | DOI:10.1007/978-3-642-41401-5_1
- Control and nash games with mean field effect, Chinese Annals of Mathematics, Series B, Volume 34 (2013) no. 2, p. 161 | DOI:10.1007/s11401-013-0767-y
- Introduction, Mean Field Games and Mean Field Type Control Theory (2013), p. 1 | DOI:10.1007/978-1-4614-8508-7_1
- The Mean Field Games, Mean Field Games and Mean Field Type Control Theory (2013), p. 11 | DOI:10.1007/978-1-4614-8508-7_3
- The Mean Field Type Control Problems, Mean Field Games and Mean Field Type Control Theory (2013), p. 15 | DOI:10.1007/978-1-4614-8508-7_4
- Approximation of Nash Games with a Large Number of Players, Mean Field Games and Mean Field Type Control Theory (2013), p. 31 | DOI:10.1007/978-1-4614-8508-7_5
- General Presentation of Mean Field Control Problems, Mean Field Games and Mean Field Type Control Theory (2013), p. 7 | DOI:10.1007/978-1-4614-8508-7_2
- Analytic Techniques, Mean Field Games and Mean Field Type Control Theory (2013), p. 99 | DOI:10.1007/978-1-4614-8508-7_10
- Morrey estimates and Hölder continuity for solutions to parabolic equations with entropy inequalities, Journal für die reine und angewandte Mathematik (Crelles Journal), Volume 2010 (2010) no. 638 | DOI:10.1515/crelle.2010.006
- Existence of regular solutions to a class of parabolic systems in two space dimensions with critical growth behaviour, ANNALI DELL'UNIVERSITA' DI FERRARA, Volume 55 (2009) no. 2, p. 239 | DOI:10.1007/s11565-009-0071-7
- Homogenization of Systems of Partial Differential Equations, Variational Analysis and Applications, Volume 79 (2005), p. 173 | DOI:10.1007/0-387-24276-7_13
Cité par 32 documents. Sources : Crossref