We present a technique for the rapid and reliable prediction of linear-functional outputs of elliptic coercive partial differential equations with affine parameter dependence. The essential components are (i) (provably) rapidly convergent global reduced-basis approximations - Galerkin projection onto a space
Mots-clés : elliptic partial differential equations, reduced-basis methods, output bounds, Galerkin approximation, a posteriori error estimation, convex analysis
@article{COCV_2002__8__1007_0, author = {Veroy, Karen and Rovas, Dimitrios V. and Patera, Anthony T.}, title = {A posteriori error estimation for reduced-basis approximation of parametrized elliptic coercive partial differential equations : {\textquotedblleft}convex inverse{\textquotedblright} bound conditioners}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {1007--1028}, publisher = {EDP-Sciences}, volume = {8}, year = {2002}, doi = {10.1051/cocv:2002041}, zbl = {1092.35031}, language = {en}, url = {https://www.numdam.org/articles/10.1051/cocv:2002041/} }
TY - JOUR AU - Veroy, Karen AU - Rovas, Dimitrios V. AU - Patera, Anthony T. TI - A posteriori error estimation for reduced-basis approximation of parametrized elliptic coercive partial differential equations : “convex inverse” bound conditioners JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2002 SP - 1007 EP - 1028 VL - 8 PB - EDP-Sciences UR - https://www.numdam.org/articles/10.1051/cocv:2002041/ DO - 10.1051/cocv:2002041 LA - en ID - COCV_2002__8__1007_0 ER -
%0 Journal Article %A Veroy, Karen %A Rovas, Dimitrios V. %A Patera, Anthony T. %T A posteriori error estimation for reduced-basis approximation of parametrized elliptic coercive partial differential equations : “convex inverse” bound conditioners %J ESAIM: Control, Optimisation and Calculus of Variations %D 2002 %P 1007-1028 %V 8 %I EDP-Sciences %U https://www.numdam.org/articles/10.1051/cocv:2002041/ %R 10.1051/cocv:2002041 %G en %F COCV_2002__8__1007_0
Veroy, Karen; Rovas, Dimitrios V.; Patera, Anthony T. A posteriori error estimation for reduced-basis approximation of parametrized elliptic coercive partial differential equations : “convex inverse” bound conditioners. ESAIM: Control, Optimisation and Calculus of Variations, Tome 8 (2002), pp. 1007-1028. doi : 10.1051/cocv:2002041. https://www.numdam.org/articles/10.1051/cocv:2002041/
[1] Fast exact linear and non-linear structural reanalysis and the Sherman-Morrison-Woodbury formulas. Int. J. Numer. Meth. Engrg. 50 (2001) 1587-1606. | Zbl
, and ,[2] Simplicial and continuation methods for approximating fixed-points and solutions to systems of equations. SIAM Rev. 22 (1980) 28-85. | MR | Zbl
and ,[3] Automatic choice of global shape functions in structural analysis. AIAA J. 16 (1978) 525-528.
, and ,[4] Nonlinear Programming: Analysis and Methods. Prentice-Hall, Inc., Englewood Cliffs, NJ (1976). | MR | Zbl
,[5] Parametric families of reduced finite element models. Theory and applications. Mech. Systems and Signal Process. 10 (1996) 381-394.
,[6] On the Reduced Basis Method. Z. Angew. Math. Mech. 75 (1995) 543-549. | MR | Zbl
and ,[7] Analysis of projection methods for solving linear systems with multiple right-hand sides. SIAM J. Sci. Comput. 18 (1997) 1698. | MR | Zbl
and ,[8] Extending substructure based iterative solvers to multiple load and repeated analyses. Comput. Meth. Appl. Mech. Engrg. 117 (1994) 195-209. | Zbl
, and ,[9] On the error behavior of the reduced basis technique for nonlinear finite element approximations. Z. Angew. Math. Mech. 63 (1983) 21-28. | MR | Zbl
and ,[10] Output bounds for reduced-basis approximations of symmetric positive definite eigenvalue problems. C. R. Acad. Sci. Paris Sér. I Math. 331 (2000) 153-158. | MR | Zbl
, , , and ,[11] Global a priori convergence theory for reduced-basis approximations of single-parameter symmetric coercive elliptic partial differential equations. C. R. Acad. Sci. Paris Sér. I Math. (submitted). | Zbl
, and ,[12] A priori convergence theory for reduced-basis approximations of single-parameter elliptic partial differential equations. J. Sci. Comput. (accepted). | Zbl
, and ,[13] Reduced basis technique for nonlinear analysis of structures. AIAA J. 18 (1980) 455-462.
and ,[14] The reduced basis method for incompressible viscous flow calculations. SIAM J. Sci. Stat. Comput. 10 (1989) 777-786. | MR | Zbl
,[15] Estimation of the error in the reduced basis method solution of nonlinear equations. Math. Comput. 45 (1985) 487-496. | MR | Zbl
,[16] Reliable real-time solution of parametrized partial differential equations: Reduced-basis output bound methods. J. Fluids Engrg. 124 (2002) 70-80.
, , , , and ,[17] Numerical analysis of continuation methods for nonlinear structural problems. Comput. & Structures 13 (1981) 103-113. | MR | Zbl
,[18] On the theory and error estimation of the reduced basis method for multi-parameter problems. Nonlinear Anal. Theor. Meth. Appl. 21 (1993) 849-858. | MR | Zbl
,
[19] A note on the stability of solving a rank-
Cité par Sources :