This paper is part of a larger project initiated with [2]. The final aim of the present paper is to give bounds for the homogenized (or effective) conductivity in two dimensional linear conductivity. The main focus is therefore the periodic setting. We prove new variational principles that are shown to be of interest in finding bounds on the homogenized conductivity. Our results unify previous approaches by the second author and make transparent the central role of quasiconformal mappings in all the two dimensional
Mots-clés : effective properties, harmonic mappings, composite materials, quasiregular mappings
@article{COCV_2002__7__379_0, author = {Alessandrini, Giovanni and Nesi, Vincenzo}, title = {Univalent $\sigma $-harmonic mappings : applications to composites}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {379--406}, publisher = {EDP-Sciences}, volume = {7}, year = {2002}, doi = {10.1051/cocv:2002060}, mrnumber = {1925034}, zbl = {1024.30010}, language = {en}, url = {https://www.numdam.org/articles/10.1051/cocv:2002060/} }
TY - JOUR AU - Alessandrini, Giovanni AU - Nesi, Vincenzo TI - Univalent $\sigma $-harmonic mappings : applications to composites JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2002 SP - 379 EP - 406 VL - 7 PB - EDP-Sciences UR - https://www.numdam.org/articles/10.1051/cocv:2002060/ DO - 10.1051/cocv:2002060 LA - en ID - COCV_2002__7__379_0 ER -
%0 Journal Article %A Alessandrini, Giovanni %A Nesi, Vincenzo %T Univalent $\sigma $-harmonic mappings : applications to composites %J ESAIM: Control, Optimisation and Calculus of Variations %D 2002 %P 379-406 %V 7 %I EDP-Sciences %U https://www.numdam.org/articles/10.1051/cocv:2002060/ %R 10.1051/cocv:2002060 %G en %F COCV_2002__7__379_0
Alessandrini, Giovanni; Nesi, Vincenzo. Univalent $\sigma $-harmonic mappings : applications to composites. ESAIM: Control, Optimisation and Calculus of Variations, Tome 7 (2002), pp. 379-406. doi : 10.1051/cocv:2002060. https://www.numdam.org/articles/10.1051/cocv:2002060/
[1] Elliptic equation in divergence form, geometric critical points of solutions and Stekloff eigenfunctions. SIAM J. Math. Anal. 25 (1994) 1259-1268. | MR | Zbl
and ,
[2] Univalent
[3] Univalent
[4] Existence of minimizers for non-quasiconvex functionals arising in optimal design. Ann. Inst. H. Poincaré Anal. Non Linéaire 15 (1998) 301-339. | Numdam | MR | Zbl
and ,[5] Minimizers for a double-well problem with affine boundary conditions. Proc. Roy. Soc. Edinburgh Sect. A 129 (1999) 439-466. | MR | Zbl
and ,[6] Area distortion of quasiconformal mappings. Acta Math. 173 (1994) 37-60. | MR | Zbl
,
[7] On quasiconformal mappings and
[8] Composites and quasiconformal mappings: New optimal bounds. University of Jyväskylä, Department of Mathematics, Preprint 233, Ottobre 2000, Jyväskylä, Finland. Calc. Var. Partial Differential Equations (to appear). | MR | Zbl
and ,[9] Fine phase mixtures as minimizers of energy. Arch. Rational Mech. Anal. 100 (1987) 13-52. | MR | Zbl
and ,[10] Univalent solutions of an elliptic system of partial differential equations arising in homogenization. Indiana Univ. Math. J. 50 (2001). | MR
, and ,[11] Asymptotic analysis for periodic structures. North Holland, Amsterdam (1978). | MR | Zbl
, and ,[12] Partial Differential Equations. Interscience, New York (1964). | MR | Zbl
, and ,[13] On a representation theorem for linear elliptic systems with discontinuous coefficients and its applications, in Convegno Internazionale sulle Equazioni alle Derivate Parziali. Cremonese, Roma (1955) 111-138. | MR | Zbl
and ,[14] Necessary conditions technique in optimization of structures. J. Mech. Phys. Solids (accepted).
,[15] Variational methods for structural optimization. Springer-Verlag, Berlin, Appl. Math. Sci. 140 (2000). | MR | Zbl
,[16] Extremal structures of multiphase heat conducting composites. Int. J. Solids Struct. 18 (1996) 2609-2618. | Zbl
and ,[17] Conductivity of a two dimensional two-phase system. Soviet Phys. JETP 32 (1971) 63-65.
,[18] The area distortion by quasiconformal mappings. Proc. Amer. Math. Soc. 123 (1995) 2793-2797. | MR | Zbl
and ,[19] Optimal bounds for conduction in two-dimensional, multiphase polycrystalline media. J. Stat. Phys. 46 (1987) 161-177. | MR
and ,[20] Optimal bounds for conduction in two-dimensional, two phase, anisotropic media, in Non-classical continuum mechanics, edited by R.J. Knops and A.A. Lacey. Cambridge, London Math. Soc. Lecture Note Ser. 122 (1987) 197-212. | MR | Zbl
and ,[21] Multiphase composites with extremal bulk modulus. J. Mech. Phys. Solids 48 (2000) 461-498. | MR | Zbl
and ,
[22] The
[23] A variational approach to the theory of effective magnetic permeability of multiphase materials. J. Appl. Phys. 33 (1962) 3125-3131. | Zbl
and ,[24] A theorem on the conductivity of a composite medium. J. Math. Phys. 5 (1964) 548-549. | MR | Zbl
,[25] Bounds for the effective conductivity of random media. Springer, Lecture Notes in Phys. 154, p. 111. | MR | Zbl
and ,[26] The relaxation of a double energy. Continuum Mech. Thermodyn. 3 (1991) 193-236. | MR | Zbl
,[27] On bounding the effective conductivity of anisotropic composites, in Homogenization and effective moduli of materials and media, edited by J.L. Ericksen, D. Kinderlehrer, R. Kohn and J.-L. Lions. Springer, New York (1986) 97-125. | MR | Zbl
and ,[28] Optimal design and relaxation of variational problems I, II, III. Comm. Pure Appl. Math. 39 (1986) 113-137, 139-182, 353-377. | MR | Zbl
and ,[29] Quasiconformal Mappings in the Plane. Springer, Berlin (1973). | MR | Zbl
and ,[30] Exact estimates of conductivity of composites formed by two isotropically conducting media taken in prescribed proportions. Proc. Roy. Soc. Edinburgh Sect. A 99 (1984) 71-87. | MR | Zbl
and ,
[31]
[32] The problem of formation of an optimal isotropic multicomponent composite. J. Optim. Theory Appl. 46 (1985) 571-589. | Zbl
and ,[33] Effective conductivity of a two-phase material with cylindrical phase boundaries. J. Appl. Phys. 46 (1975) 917.
,[34] Concerning bounds on the transport and mechanical properties of multicomponent composite materials. Appl. Phys. A 26 (1981) 125-130.
,[35] On characterizing the set of possible effective tensors of composites: The variational method and the translation method. Comm. Pure Appl. Math. 43 (1990) 63-125. | MR | Zbl
,[36] Variational bounds on the effective moduli of anisotropic composites. J. Mech. Phys. Solids 36 (1988) 597-629. | MR | Zbl
and ,
[37] Optimal
[38] Variational models for microstructure and phase transitions, Calculus of variations and geometric evolution problems. Cetraro (1996) 85-210. Springer, Berlin, Lecture Notes in Math. 1713 (1999). | MR | Zbl
,[39] Compacité par compensation : condition nécessaire et suffisante de continuité faible sous une hypothèse de rang constant. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 8 (1981) 69-102. | Numdam | MR | Zbl
,[40] Calcul des variations et homogénéisation, in Les Méthodes de L'Homogénéisation : Théorie et Applications en Physique. Eyrolles (1985) 319-369.
and ,[41] Using quasiconvex functionals to bound the effective conductivity of composite materials. Proc. Roy. Soc. Edinburgh Sect. A 123 (1993) 633-679. | MR | Zbl
,
[42] Bounds on the effective conductivity of
[43] Quasiconformal mappings as a tool to study the effective conductivity of two dimensional composites made of
[44] Sphere assemblage model for polycrystal and symmetric materials. J. Appl. Phys. 54 (1982) 1380-1382.
,[45] A reciprocal theorem in two dimensional heat transfer and its implications. Internat. Commun. Heat Mass Transfer 19 (1992) 497-515.
,[46] Sul limite delle soluzioni di problemi di Cauchy relativi all'equazione del calore. Ann. Scuola Norm. Sup. Pisa (3) 21 (1967) 657-699. | Numdam | Zbl
,[47] Sulla convergenza di soluzioni di equazioni paraboliche ed ellittiche. Ann. Scuola Norm. Sup. Pisa (3) 22 (1968) 571-597. | Numdam | MR | Zbl
,[48] Estimations de coefficients homogénéisés. Springer, Berlin, Lecture Notes in Math. 704 (1978) 364-373. English translation: Estimations of homogenized coefficients, in Topics in the mathematical modelling of composite materials, 9-20. Birkhäuser, Progr. Nonlinear Differential Equations Appl. 31. | MR | Zbl
,[49] Estimations fines des coefficients homogénéisés, in Ennio De Giorgi's Colloquium (Paris 1983), edited by P. Kree. Pitman, Boston (1985) 168-187. | Zbl
,[50] Compensated compactness and applications to p.d.e. in nonlinear analysis and mechanics, in Heriot-Watt Symposium, Vol. IV, edited by R.J. Knops. Pitman, Boston (1979) 136-212. | Zbl
,[51] Fondamenti di calcolo delle variazioni. Zanichelli, Bologna (1921). | JFM
,[52] Generalized Analytic Functions. Pergamon, Oxford (1962). | MR | Zbl
,[53] Estimates for the averaged matrix and the averaged tensor. Russian Math. Surveys (46) 3 (1991) 65-136. | MR | Zbl
,- Structure of Fields in Extremal 2D Conducting Multimaterial Composites, Continuum Models and Discrete Systems, Volume 457 (2024), p. 75 | DOI:10.1007/978-3-031-58665-1_6
- , Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2015, Volume 9435 (2015), p. 94350F | DOI:10.1117/12.2082953
- An application of impediography to the high sensitivity and high resolution identification of structural damage, Smart Materials and Structures, Volume 24 (2015) no. 6, p. 065044 | DOI:10.1088/0964-1726/24/6/065044
- Variational method for optimal multimaterial composites and optimal design, International Journal of Engineering Science, Volume 83 (2014), p. 162 | DOI:10.1016/j.ijengsci.2014.03.002
- Expansion formulae for the homogenized determinant of anisotropic checkerboards, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, Volume 462 (2006) no. 2073, p. 2759 | DOI:10.1098/rspa.2006.1690
- Change of Sign of the Corrector’s Determinant for Homogenization in Three-Dimensional Conductivity, Archive for Rational Mechanics and Analysis, Volume 173 (2004) no. 1, p. 133 | DOI:10.1007/s00205-004-0315-8
- Is it wise to keep laminating?, ESAIM: Control, Optimisation and Calculus of Variations, Volume 10 (2004) no. 4, p. 452 | DOI:10.1051/cocv:2004015
- Univalent Σ-harmonic mappings: connections with quasiconformal mappings, Journal d'Analyse Mathématique, Volume 90 (2003) no. 1, p. 197 | DOI:10.1007/bf02786556
Cité par 8 documents. Sources : Crossref